Whakaoti mō p, b
p=55
b=75
Tohaina
Kua tāruatia ki te papatopenga
p+b=130,p+1.09b=136.75
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
p+b=130
Kōwhiria tētahi o ngā whārite ka whakaotia mō te p mā te wehe i te p i te taha mauī o te tohu ōrite.
p=-b+130
Me tango b mai i ngā taha e rua o te whārite.
-b+130+1.09b=136.75
Whakakapia te -b+130 mō te p ki tērā atu whārite, p+1.09b=136.75.
0.09b+130=136.75
Tāpiri -b ki te \frac{109b}{100}.
0.09b=6.75
Me tango 130 mai i ngā taha e rua o te whārite.
b=75
Whakawehea ngā taha e rua o te whārite ki te 0.09, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
p=-75+130
Whakaurua te 75 mō b ki p=-b+130. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō p hāngai tonu.
p=55
Tāpiri 130 ki te -75.
p=55,b=75
Kua oti te pūnaha te whakatau.
p+b=130,p+1.09b=136.75
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}130\\136.75\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&1.09\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1.09}{1.09-1}&-\frac{1}{1.09-1}\\-\frac{1}{1.09-1}&\frac{1}{1.09-1}\end{matrix}\right)\left(\begin{matrix}130\\136.75\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{109}{9}&-\frac{100}{9}\\-\frac{100}{9}&\frac{100}{9}\end{matrix}\right)\left(\begin{matrix}130\\136.75\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{109}{9}\times 130-\frac{100}{9}\times 136.75\\-\frac{100}{9}\times 130+\frac{100}{9}\times 136.75\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}55\\75\end{matrix}\right)
Mahia ngā tātaitanga.
p=55,b=75
Tangohia ngā huānga poukapa p me b.
p+b=130,p+1.09b=136.75
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
p-p+b-1.09b=130-136.75
Me tango p+1.09b=136.75 mai i p+b=130 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
b-1.09b=130-136.75
Tāpiri p ki te -p. Ka whakakore atu ngā kupu p me -p, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-0.09b=130-136.75
Tāpiri b ki te -\frac{109b}{100}.
-0.09b=-6.75
Tāpiri 130 ki te -136.75.
b=75
Whakawehea ngā taha e rua o te whārite ki te -0.09, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
p+1.09\times 75=136.75
Whakaurua te 75 mō b ki p+1.09b=136.75. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō p hāngai tonu.
p+81.75=136.75
Whakareatia 1.09 ki te 75.
p=55
Me tango 81.75 mai i ngā taha e rua o te whārite.
p=55,b=75
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}