Whakaoti mō p, q
p=-2
q=3
Tohaina
Kua tāruatia ki te papatopenga
p+2q=4,-3p+4q=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
p+2q=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te p mā te wehe i te p i te taha mauī o te tohu ōrite.
p=-2q+4
Me tango 2q mai i ngā taha e rua o te whārite.
-3\left(-2q+4\right)+4q=18
Whakakapia te -2q+4 mō te p ki tērā atu whārite, -3p+4q=18.
6q-12+4q=18
Whakareatia -3 ki te -2q+4.
10q-12=18
Tāpiri 6q ki te 4q.
10q=30
Me tāpiri 12 ki ngā taha e rua o te whārite.
q=3
Whakawehea ngā taha e rua ki te 10.
p=-2\times 3+4
Whakaurua te 3 mō q ki p=-2q+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō p hāngai tonu.
p=-6+4
Whakareatia -2 ki te 3.
p=-2
Tāpiri 4 ki te -6.
p=-2,q=3
Kua oti te pūnaha te whakatau.
p+2q=4,-3p+4q=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-3&4\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}4\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-3&4\end{matrix}\right))\left(\begin{matrix}1&2\\-3&4\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\left(-3\right)}&-\frac{2}{4-2\left(-3\right)}\\-\frac{-3}{4-2\left(-3\right)}&\frac{1}{4-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 4-\frac{1}{5}\times 18\\\frac{3}{10}\times 4+\frac{1}{10}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
p=-2,q=3
Tangohia ngā huānga poukapa p me q.
p+2q=4,-3p+4q=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3p-3\times 2q=-3\times 4,-3p+4q=18
Kia ōrite ai a p me -3p, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3p-6q=-12,-3p+4q=18
Whakarūnātia.
-3p+3p-6q-4q=-12-18
Me tango -3p+4q=18 mai i -3p-6q=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6q-4q=-12-18
Tāpiri -3p ki te 3p. Ka whakakore atu ngā kupu -3p me 3p, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10q=-12-18
Tāpiri -6q ki te -4q.
-10q=-30
Tāpiri -12 ki te -18.
q=3
Whakawehea ngā taha e rua ki te -10.
-3p+4\times 3=18
Whakaurua te 3 mō q ki -3p+4q=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō p hāngai tonu.
-3p+12=18
Whakareatia 4 ki te 3.
-3p=6
Me tango 12 mai i ngā taha e rua o te whārite.
p=-2
Whakawehea ngā taha e rua ki te -3.
p=-2,q=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}