Whakaoti mō n, y
y=4
n=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
n+y=4,2n+3y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
n+y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te n mā te wehe i te n i te taha mauī o te tohu ōrite.
n=-y+4
Me tango y mai i ngā taha e rua o te whārite.
2\left(-y+4\right)+3y=12
Whakakapia te -y+4 mō te n ki tērā atu whārite, 2n+3y=12.
-2y+8+3y=12
Whakareatia 2 ki te -y+4.
y+8=12
Tāpiri -2y ki te 3y.
y=4
Me tango 8 mai i ngā taha e rua o te whārite.
n=-4+4
Whakaurua te 4 mō y ki n=-y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō n hāngai tonu.
n=0
Tāpiri 4 ki te -4.
n=0,y=4
Kua oti te pūnaha te whakatau.
n+y=4,2n+3y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}n\\y\end{matrix}\right)=\left(\begin{matrix}4\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}n\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}n\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}n\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}n\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}4\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}n\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}4\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}n\\y\end{matrix}\right)=\left(\begin{matrix}3\times 4-12\\-2\times 4+12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}n\\y\end{matrix}\right)=\left(\begin{matrix}0\\4\end{matrix}\right)
Mahia ngā tātaitanga.
n=0,y=4
Tangohia ngā huānga poukapa n me y.
n+y=4,2n+3y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2n+2y=2\times 4,2n+3y=12
Kia ōrite ai a n me 2n, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2n+2y=8,2n+3y=12
Whakarūnātia.
2n-2n+2y-3y=8-12
Me tango 2n+3y=12 mai i 2n+2y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-3y=8-12
Tāpiri 2n ki te -2n. Ka whakakore atu ngā kupu 2n me -2n, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=8-12
Tāpiri 2y ki te -3y.
-y=-4
Tāpiri 8 ki te -12.
y=4
Whakawehea ngā taha e rua ki te -1.
2n+3\times 4=12
Whakaurua te 4 mō y ki 2n+3y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō n hāngai tonu.
2n+12=12
Whakareatia 3 ki te 4.
2n=0
Me tango 12 mai i ngā taha e rua o te whārite.
n=0
Whakawehea ngā taha e rua ki te 2.
n=0,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}