Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y (complex solution)
Tick mark Image
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

mx-y+1-3m=0,x+my-3m-1=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
mx-y+1-3m=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
mx-y=3m-1
Me tango -3m+1 mai i ngā taha e rua o te whārite.
mx=y+3m-1
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{m}\left(y+3m-1\right)
Whakawehea ngā taha e rua ki te m.
x=\frac{1}{m}y+3-\frac{1}{m}
Whakareatia \frac{1}{m} ki te y+3m-1.
\frac{1}{m}y+3-\frac{1}{m}+my-3m-1=0
Whakakapia te \frac{y-1+3m}{m} mō te x ki tērā atu whārite, x+my-3m-1=0.
\left(m+\frac{1}{m}\right)y+3-\frac{1}{m}-3m-1=0
Tāpiri \frac{y}{m} ki te my.
\left(m+\frac{1}{m}\right)y-3m+2-\frac{1}{m}=0
Tāpiri 3-\frac{1}{m} ki te -3m-1.
\left(m+\frac{1}{m}\right)y=3m-2+\frac{1}{m}
Me tango 2-\frac{1}{m}-3m mai i ngā taha e rua o te whārite.
y=\frac{3m^{2}-2m+1}{m^{2}+1}
Whakawehea ngā taha e rua ki te m+\frac{1}{m}.
x=\frac{1}{m}\times \frac{3m^{2}-2m+1}{m^{2}+1}+3-\frac{1}{m}
Whakaurua te \frac{3m^{2}+1-2m}{m^{2}+1} mō y ki x=\frac{1}{m}y+3-\frac{1}{m}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3m^{2}-2m+1}{m\left(m^{2}+1\right)}+3-\frac{1}{m}
Whakareatia \frac{1}{m} ki te \frac{3m^{2}+1-2m}{m^{2}+1}.
x=\frac{3m^{2}+2m+1}{\left(m-i\right)\left(m+i\right)}
Tāpiri 3-\frac{1}{m} ki te \frac{3m^{2}+1-2m}{m\left(m^{2}+1\right)}.
x=\frac{3m^{2}+2m+1}{\left(m-i\right)\left(m+i\right)},y=\frac{3m^{2}-2m+1}{m^{2}+1}
Kua oti te pūnaha te whakatau.
mx-y+1-3m=0,x+my-3m-1=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}m&-1\\1&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}m&-1\\1&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}m&-1\\1&m\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{mm-\left(-1\right)}&-\frac{-1}{mm-\left(-1\right)}\\-\frac{1}{mm-\left(-1\right)}&\frac{m}{mm-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{m^{2}+1}&\frac{1}{m^{2}+1}\\-\frac{1}{m^{2}+1}&\frac{m}{m^{2}+1}\end{matrix}\right)\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{m^{2}+1}\left(3m-1\right)+\frac{1}{m^{2}+1}\left(3m+1\right)\\\left(-\frac{1}{m^{2}+1}\right)\left(3m-1\right)+\frac{m}{m^{2}+1}\left(3m+1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3m^{2}+2m+1}{m^{2}+1}\\\frac{3m^{2}-2m+1}{m^{2}+1}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3m^{2}+2m+1}{m^{2}+1},y=\frac{3m^{2}-2m+1}{m^{2}+1}
Tangohia ngā huānga poukapa x me y.
mx-y+1-3m=0,x+my-3m-1=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
mx-y+1-3m=0,mx+mmy+m\left(-3m-1\right)=0
Kia ōrite ai a mx me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te m.
mx-y+1-3m=0,mx+m^{2}y-m\left(3m+1\right)=0
Whakarūnātia.
mx+\left(-m\right)x-y+\left(-m^{2}\right)y+1-3m+m\left(3m+1\right)=0
Me tango mx+m^{2}y-m\left(3m+1\right)=0 mai i mx-y+1-3m=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+\left(-m^{2}\right)y+1-3m+m\left(3m+1\right)=0
Tāpiri mx ki te -mx. Ka whakakore atu ngā kupu mx me -mx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(-m^{2}-1\right)y+1-3m+m\left(3m+1\right)=0
Tāpiri -y ki te -m^{2}y.
\left(-m^{2}-1\right)y+3m^{2}-2m+1=0
Tāpiri -3m+1 ki te m\left(3m+1\right).
\left(-m^{2}-1\right)y=-3m^{2}+2m-1
Me tango -2m+1+3m^{2} mai i ngā taha e rua o te whārite.
y=-\frac{-3m^{2}+2m-1}{m^{2}+1}
Whakawehea ngā taha e rua ki te -1-m^{2}.
x+m\left(-\frac{-3m^{2}+2m-1}{m^{2}+1}\right)-3m-1=0
Whakaurua te -\frac{2m-1-3m^{2}}{1+m^{2}} mō y ki x+my-3m-1=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{m\left(-3m^{2}+2m-1\right)}{m^{2}+1}-3m-1=0
Whakareatia m ki te -\frac{2m-1-3m^{2}}{1+m^{2}}.
x-\frac{3m^{2}+2m+1}{\left(m-i\right)\left(m+i\right)}=0
Tāpiri -\frac{m\left(2m-1-3m^{2}\right)}{1+m^{2}} ki te -3m-1.
x=\frac{3m^{2}+2m+1}{\left(m-i\right)\left(m+i\right)}
Me tāpiri \frac{2m+3m^{2}+1}{\left(m+i\right)\left(m-i\right)} ki ngā taha e rua o te whārite.
x=\frac{3m^{2}+2m+1}{\left(m-i\right)\left(m+i\right)},y=-\frac{-3m^{2}+2m-1}{m^{2}+1}
Kua oti te pūnaha te whakatau.
mx-y+1-3m=0,x+my-3m-1=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
mx-y+1-3m=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
mx-y=3m-1
Me tango -3m+1 mai i ngā taha e rua o te whārite.
mx=y+3m-1
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{m}\left(y+3m-1\right)
Whakawehea ngā taha e rua ki te m.
x=\frac{1}{m}y+3-\frac{1}{m}
Whakareatia \frac{1}{m} ki te y+3m-1.
\frac{1}{m}y+3-\frac{1}{m}+my-3m-1=0
Whakakapia te \frac{y-1+3m}{m} mō te x ki tērā atu whārite, x+my-3m-1=0.
\left(m+\frac{1}{m}\right)y+3-\frac{1}{m}-3m-1=0
Tāpiri \frac{y}{m} ki te my.
\left(m+\frac{1}{m}\right)y-3m+2-\frac{1}{m}=0
Tāpiri 3-\frac{1}{m} ki te -3m-1.
\left(m+\frac{1}{m}\right)y=3m-2+\frac{1}{m}
Me tango 2-\frac{1}{m}-3m mai i ngā taha e rua o te whārite.
y=\frac{3m^{2}-2m+1}{m^{2}+1}
Whakawehea ngā taha e rua ki te m+\frac{1}{m}.
x=\frac{1}{m}\times \frac{3m^{2}-2m+1}{m^{2}+1}+3-\frac{1}{m}
Whakaurua te \frac{3m^{2}+1-2m}{m^{2}+1} mō y ki x=\frac{1}{m}y+3-\frac{1}{m}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3m^{2}-2m+1}{m\left(m^{2}+1\right)}+3-\frac{1}{m}
Whakareatia \frac{1}{m} ki te \frac{3m^{2}+1-2m}{m^{2}+1}.
x=\frac{3m^{2}+2m+1}{m^{2}+1}
Tāpiri 3-\frac{1}{m} ki te \frac{3m^{2}+1-2m}{m\left(m^{2}+1\right)}.
x=\frac{3m^{2}+2m+1}{m^{2}+1},y=\frac{3m^{2}-2m+1}{m^{2}+1}
Kua oti te pūnaha te whakatau.
mx-y+1-3m=0,x+my-3m-1=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}m&-1\\1&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}m&-1\\1&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}m&-1\\1&m\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{mm-\left(-1\right)}&-\frac{-1}{mm-\left(-1\right)}\\-\frac{1}{mm-\left(-1\right)}&\frac{m}{mm-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{m^{2}+1}&\frac{1}{m^{2}+1}\\-\frac{1}{m^{2}+1}&\frac{m}{m^{2}+1}\end{matrix}\right)\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{m^{2}+1}\left(3m-1\right)+\frac{1}{m^{2}+1}\left(3m+1\right)\\\left(-\frac{1}{m^{2}+1}\right)\left(3m-1\right)+\frac{m}{m^{2}+1}\left(3m+1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3m^{2}+2m+1}{m^{2}+1}\\\frac{3m^{2}-2m+1}{m^{2}+1}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3m^{2}+2m+1}{m^{2}+1},y=\frac{3m^{2}-2m+1}{m^{2}+1}
Tangohia ngā huānga poukapa x me y.
mx-y+1-3m=0,x+my-3m-1=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
mx-y+1-3m=0,mx+mmy+m\left(-3m-1\right)=0
Kia ōrite ai a mx me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te m.
mx-y+1-3m=0,mx+m^{2}y-m\left(3m+1\right)=0
Whakarūnātia.
mx+\left(-m\right)x-y+\left(-m^{2}\right)y+1-3m+m\left(3m+1\right)=0
Me tango mx+m^{2}y-m\left(3m+1\right)=0 mai i mx-y+1-3m=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+\left(-m^{2}\right)y+1-3m+m\left(3m+1\right)=0
Tāpiri mx ki te -mx. Ka whakakore atu ngā kupu mx me -mx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(-m^{2}-1\right)y+1-3m+m\left(3m+1\right)=0
Tāpiri -y ki te -m^{2}y.
\left(-m^{2}-1\right)y+3m^{2}-2m+1=0
Tāpiri -3m+1 ki te m\left(3m+1\right).
\left(-m^{2}-1\right)y=-3m^{2}+2m-1
Me tango -2m+1+3m^{2} mai i ngā taha e rua o te whārite.
y=-\frac{-3m^{2}+2m-1}{m^{2}+1}
Whakawehea ngā taha e rua ki te -1-m^{2}.
x+m\left(-\frac{-3m^{2}+2m-1}{m^{2}+1}\right)-3m-1=0
Whakaurua te -\frac{2m-1-3m^{2}}{1+m^{2}} mō y ki x+my-3m-1=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{m\left(-3m^{2}+2m-1\right)}{m^{2}+1}-3m-1=0
Whakareatia m ki te -\frac{2m-1-3m^{2}}{1+m^{2}}.
x-\frac{3m^{2}+2m+1}{m^{2}+1}=0
Tāpiri -\frac{m\left(2m-1-3m^{2}\right)}{1+m^{2}} ki te -3m-1.
x=\frac{3m^{2}+2m+1}{m^{2}+1}
Me tāpiri \frac{2m+3m^{2}+1}{1+m^{2}} ki ngā taha e rua o te whārite.
x=\frac{3m^{2}+2m+1}{m^{2}+1},y=-\frac{-3m^{2}+2m-1}{m^{2}+1}
Kua oti te pūnaha te whakatau.