Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}\\x=m+n\text{, }y=m-n\text{, }&\text{unconditionally}\\x=2m-y\text{, }y\in \mathrm{C}\text{, }&m=-n\end{matrix}\right.
Whakaoti mō x, y
\left\{\begin{matrix}\\x=m+n\text{, }y=m-n\text{, }&\text{unconditionally}\\x=2m-y\text{, }y\in \mathrm{R}\text{, }&m=-n\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
mx+\left(-n\right)y=m^{2}+n^{2},x+y=2m
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
mx+\left(-n\right)y=m^{2}+n^{2}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
mx=ny+m^{2}+n^{2}
Me tāpiri ny ki ngā taha e rua o te whārite.
x=\frac{1}{m}\left(ny+m^{2}+n^{2}\right)
Whakawehea ngā taha e rua ki te m.
x=\frac{n}{m}y+\frac{n^{2}}{m}+m
Whakareatia \frac{1}{m} ki te ny+m^{2}+n^{2}.
\frac{n}{m}y+\frac{n^{2}}{m}+m+y=2m
Whakakapia te \frac{m^{2}+ny+n^{2}}{m} mō te x ki tērā atu whārite, x+y=2m.
\frac{m+n}{m}y+\frac{n^{2}}{m}+m=2m
Tāpiri \frac{ny}{m} ki te y.
\frac{m+n}{m}y=-\frac{n^{2}}{m}+m
Me tango m+\frac{n^{2}}{m} mai i ngā taha e rua o te whārite.
y=m-n
Whakawehea ngā taha e rua ki te \frac{m+n}{m}.
x=\frac{n}{m}\left(m-n\right)+\frac{n^{2}}{m}+m
Whakaurua te m-n mō y ki x=\frac{n}{m}y+\frac{n^{2}}{m}+m. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{n\left(m-n\right)}{m}+\frac{n^{2}}{m}+m
Whakareatia \frac{n}{m} ki te m-n.
x=m+n
Tāpiri m+\frac{n^{2}}{m} ki te \frac{n\left(m-n\right)}{m}.
x=m+n,y=m-n
Kua oti te pūnaha te whakatau.
mx+\left(-n\right)y=m^{2}+n^{2},x+y=2m
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}m&-n\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}m&-n\\1&1\end{matrix}\right))\left(\begin{matrix}m&-n\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-n\\1&1\end{matrix}\right))\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}m&-n\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-n\\1&1\end{matrix}\right))\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-n\\1&1\end{matrix}\right))\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{m-\left(-n\right)}&-\frac{-n}{m-\left(-n\right)}\\-\frac{1}{m-\left(-n\right)}&\frac{m}{m-\left(-n\right)}\end{matrix}\right)\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{m+n}&\frac{n}{m+n}\\-\frac{1}{m+n}&\frac{m}{m+n}\end{matrix}\right)\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{m+n}\left(m^{2}+n^{2}\right)+\frac{n}{m+n}\times 2m\\\left(-\frac{1}{m+n}\right)\left(m^{2}+n^{2}\right)+\frac{m}{m+n}\times 2m\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}m+n\\m-n\end{matrix}\right)
Mahia ngā tātaitanga.
x=m+n,y=m-n
Tangohia ngā huānga poukapa x me y.
mx+\left(-n\right)y=m^{2}+n^{2},x+y=2m
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
mx+\left(-n\right)y=m^{2}+n^{2},mx+my=m\times 2m
Kia ōrite ai a mx me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te m.
mx+\left(-n\right)y=m^{2}+n^{2},mx+my=2m^{2}
Whakarūnātia.
mx+\left(-m\right)x+\left(-n\right)y+\left(-m\right)y=m^{2}+n^{2}-2m^{2}
Me tango mx+my=2m^{2} mai i mx+\left(-n\right)y=m^{2}+n^{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-n\right)y+\left(-m\right)y=m^{2}+n^{2}-2m^{2}
Tāpiri mx ki te -mx. Ka whakakore atu ngā kupu mx me -mx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(-m-n\right)y=m^{2}+n^{2}-2m^{2}
Tāpiri -ny ki te -my.
\left(-m-n\right)y=\left(n-m\right)\left(m+n\right)
Tāpiri m^{2}+n^{2} ki te -2m^{2}.
y=m-n
Whakawehea ngā taha e rua ki te -m-n.
x+m-n=2m
Whakaurua te m-n mō y ki x+y=2m. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=m+n
Me tango m-n mai i ngā taha e rua o te whārite.
x=m+n,y=m-n
Kua oti te pūnaha te whakatau.
mx+\left(-n\right)y=m^{2}+n^{2},x+y=2m
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
mx+\left(-n\right)y=m^{2}+n^{2}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
mx=ny+m^{2}+n^{2}
Me tāpiri ny ki ngā taha e rua o te whārite.
x=\frac{1}{m}\left(ny+m^{2}+n^{2}\right)
Whakawehea ngā taha e rua ki te m.
x=\frac{n}{m}y+\frac{n^{2}}{m}+m
Whakareatia \frac{1}{m} ki te ny+m^{2}+n^{2}.
\frac{n}{m}y+\frac{n^{2}}{m}+m+y=2m
Whakakapia te \frac{m^{2}+ny+n^{2}}{m} mō te x ki tērā atu whārite, x+y=2m.
\frac{m+n}{m}y+\frac{n^{2}}{m}+m=2m
Tāpiri \frac{ny}{m} ki te y.
\frac{m+n}{m}y=-\frac{n^{2}}{m}+m
Me tango m+\frac{n^{2}}{m} mai i ngā taha e rua o te whārite.
y=m-n
Whakawehea ngā taha e rua ki te \frac{m+n}{m}.
x=\frac{n}{m}\left(m-n\right)+\frac{n^{2}}{m}+m
Whakaurua te m-n mō y ki x=\frac{n}{m}y+\frac{n^{2}}{m}+m. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{n\left(m-n\right)}{m}+\frac{n^{2}}{m}+m
Whakareatia \frac{n}{m} ki te m-n.
x=m+n
Tāpiri m+\frac{n^{2}}{m} ki te \frac{n\left(m-n\right)}{m}.
x=m+n,y=m-n
Kua oti te pūnaha te whakatau.
mx+\left(-n\right)y=m^{2}+n^{2},x+y=2m
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}m&-n\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}m&-n\\1&1\end{matrix}\right))\left(\begin{matrix}m&-n\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-n\\1&1\end{matrix}\right))\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}m&-n\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-n\\1&1\end{matrix}\right))\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-n\\1&1\end{matrix}\right))\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{m-\left(-n\right)}&-\frac{-n}{m-\left(-n\right)}\\-\frac{1}{m-\left(-n\right)}&\frac{m}{m-\left(-n\right)}\end{matrix}\right)\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{m+n}&\frac{n}{m+n}\\-\frac{1}{m+n}&\frac{m}{m+n}\end{matrix}\right)\left(\begin{matrix}m^{2}+n^{2}\\2m\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{m+n}\left(m^{2}+n^{2}\right)+\frac{n}{m+n}\times 2m\\\left(-\frac{1}{m+n}\right)\left(m^{2}+n^{2}\right)+\frac{m}{m+n}\times 2m\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}m+n\\m-n\end{matrix}\right)
Mahia ngā tātaitanga.
x=m+n,y=m-n
Tangohia ngā huānga poukapa x me y.
mx+\left(-n\right)y=m^{2}+n^{2},x+y=2m
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
mx+\left(-n\right)y=m^{2}+n^{2},mx+my=m\times 2m
Kia ōrite ai a mx me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te m.
mx+\left(-n\right)y=m^{2}+n^{2},mx+my=2m^{2}
Whakarūnātia.
mx+\left(-m\right)x+\left(-n\right)y+\left(-m\right)y=m^{2}+n^{2}-2m^{2}
Me tango mx+my=2m^{2} mai i mx+\left(-n\right)y=m^{2}+n^{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-n\right)y+\left(-m\right)y=m^{2}+n^{2}-2m^{2}
Tāpiri mx ki te -mx. Ka whakakore atu ngā kupu mx me -mx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(-m-n\right)y=m^{2}+n^{2}-2m^{2}
Tāpiri -ny ki te -my.
\left(-m-n\right)y=\left(n-m\right)\left(m+n\right)
Tāpiri m^{2}+n^{2} ki te -2m^{2}.
y=m-n
Whakawehea ngā taha e rua ki te -m-n.
x+m-n=2m
Whakaurua te m-n mō y ki x+y=2m. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=m+n
Me tango m-n mai i ngā taha e rua o te whārite.
x=m+n,y=m-n
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}