Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

m^{2}-2m-3=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-3\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -2 mō te b, me te -3 mō te c i te ture pūrua.
m=\frac{2±4}{2}
Mahia ngā tātaitai.
m=3 m=-1
Whakaotia te whārite m=\frac{2±4}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(m-3\right)\left(m+1\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
m-3>0 m+1<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te m-3 me te m+1. Whakaarohia te tauira ina he tōrunga te m-3 he tōraro te m+1.
m\in \emptyset
He teka tēnei mō tētahi m ahakoa.
m+1>0 m-3<0
Whakaarohia te tauira ina he tōrunga te m+1 he tōraro te m-3.
m\in \left(-1,3\right)
Te otinga e whakaea i ngā koreōrite e rua ko m\in \left(-1,3\right).
m\in \left(-1,3\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.