Whakaoti mō m, n
m=\frac{4}{5}=0.8
n=\frac{1}{5}=0.2
Tohaina
Kua tāruatia ki te papatopenga
m+n=1,-3m+2n=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
m+n=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
m=-n+1
Me tango n mai i ngā taha e rua o te whārite.
-3\left(-n+1\right)+2n=-2
Whakakapia te -n+1 mō te m ki tērā atu whārite, -3m+2n=-2.
3n-3+2n=-2
Whakareatia -3 ki te -n+1.
5n-3=-2
Tāpiri 3n ki te 2n.
5n=1
Me tāpiri 3 ki ngā taha e rua o te whārite.
n=\frac{1}{5}
Whakawehea ngā taha e rua ki te 5.
m=-\frac{1}{5}+1
Whakaurua te \frac{1}{5} mō n ki m=-n+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=\frac{4}{5}
Tāpiri 1 ki te -\frac{1}{5}.
m=\frac{4}{5},n=\frac{1}{5}
Kua oti te pūnaha te whakatau.
m+n=1,-3m+2n=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{1}{2-\left(-3\right)}\\-\frac{-3}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}-\frac{1}{5}\left(-2\right)\\\frac{3}{5}+\frac{1}{5}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\\\frac{1}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
m=\frac{4}{5},n=\frac{1}{5}
Tangohia ngā huānga poukapa m me n.
m+n=1,-3m+2n=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3m-3n=-3,-3m+2n=-2
Kia ōrite ai a m me -3m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3m+3m-3n-2n=-3+2
Me tango -3m+2n=-2 mai i -3m-3n=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3n-2n=-3+2
Tāpiri -3m ki te 3m. Ka whakakore atu ngā kupu -3m me 3m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5n=-3+2
Tāpiri -3n ki te -2n.
-5n=-1
Tāpiri -3 ki te 2.
n=\frac{1}{5}
Whakawehea ngā taha e rua ki te -5.
-3m+2\times \frac{1}{5}=-2
Whakaurua te \frac{1}{5} mō n ki -3m+2n=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
-3m+\frac{2}{5}=-2
Whakareatia 2 ki te \frac{1}{5}.
-3m=-\frac{12}{5}
Me tango \frac{2}{5} mai i ngā taha e rua o te whārite.
m=\frac{4}{5}
Whakawehea ngā taha e rua ki te -3.
m=\frac{4}{5},n=\frac{1}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}