Whakaoti mō m, n
m=3
n=\frac{3}{4}=0.75
Tohaina
Kua tāruatia ki te papatopenga
m+3-8n=0
Whakaarohia te whārite tuatahi. Tangohia te 8n mai i ngā taha e rua.
m-8n=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
m-8n=-3,m+4n=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
m-8n=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
m=8n-3
Me tāpiri 8n ki ngā taha e rua o te whārite.
8n-3+4n=6
Whakakapia te 8n-3 mō te m ki tērā atu whārite, m+4n=6.
12n-3=6
Tāpiri 8n ki te 4n.
12n=9
Me tāpiri 3 ki ngā taha e rua o te whārite.
n=\frac{3}{4}
Whakawehea ngā taha e rua ki te 12.
m=8\times \frac{3}{4}-3
Whakaurua te \frac{3}{4} mō n ki m=8n-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=6-3
Whakareatia 8 ki te \frac{3}{4}.
m=3
Tāpiri -3 ki te 6.
m=3,n=\frac{3}{4}
Kua oti te pūnaha te whakatau.
m+3-8n=0
Whakaarohia te whārite tuatahi. Tangohia te 8n mai i ngā taha e rua.
m-8n=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
m-8n=-3,m+4n=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-8\\1&4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-3\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-8\\1&4\end{matrix}\right))\left(\begin{matrix}1&-8\\1&4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&4\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-8\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&4\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&4\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-8\right)}&-\frac{-8}{4-\left(-8\right)}\\-\frac{1}{4-\left(-8\right)}&\frac{1}{4-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-3\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-3\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-3\right)+\frac{2}{3}\times 6\\-\frac{1}{12}\left(-3\right)+\frac{1}{12}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
m=3,n=\frac{3}{4}
Tangohia ngā huānga poukapa m me n.
m+3-8n=0
Whakaarohia te whārite tuatahi. Tangohia te 8n mai i ngā taha e rua.
m-8n=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
m-8n=-3,m+4n=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
m-m-8n-4n=-3-6
Me tango m+4n=6 mai i m-8n=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8n-4n=-3-6
Tāpiri m ki te -m. Ka whakakore atu ngā kupu m me -m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12n=-3-6
Tāpiri -8n ki te -4n.
-12n=-9
Tāpiri -3 ki te -6.
n=\frac{3}{4}
Whakawehea ngā taha e rua ki te -12.
m+4\times \frac{3}{4}=6
Whakaurua te \frac{3}{4} mō n ki m+4n=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m+3=6
Whakareatia 4 ki te \frac{3}{4}.
m=3
Me tango 3 mai i ngā taha e rua o te whārite.
m=3,n=\frac{3}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}