Whakaoti mō m, n
m=-1
n=3
Tohaina
Kua tāruatia ki te papatopenga
m+2n=5,-2m+n+2=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
m+2n=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
m=-2n+5
Me tango 2n mai i ngā taha e rua o te whārite.
-2\left(-2n+5\right)+n+2=7
Whakakapia te -2n+5 mō te m ki tērā atu whārite, -2m+n+2=7.
4n-10+n+2=7
Whakareatia -2 ki te -2n+5.
5n-10+2=7
Tāpiri 4n ki te n.
5n-8=7
Tāpiri -10 ki te 2.
5n=15
Me tāpiri 8 ki ngā taha e rua o te whārite.
n=3
Whakawehea ngā taha e rua ki te 5.
m=-2\times 3+5
Whakaurua te 3 mō n ki m=-2n+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=-6+5
Whakareatia -2 ki te 3.
m=-1
Tāpiri 5 ki te -6.
m=-1,n=3
Kua oti te pūnaha te whakatau.
m+2n=5,-2m+n+2=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-2\right)}&-\frac{2}{1-2\left(-2\right)}\\-\frac{-2}{1-2\left(-2\right)}&\frac{1}{1-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{2}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 5-\frac{2}{5}\times 5\\\frac{2}{5}\times 5+\frac{1}{5}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
m=-1,n=3
Tangohia ngā huānga poukapa m me n.
m+2n=5,-2m+n+2=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2m-2\times 2n=-2\times 5,-2m+n+2=7
Kia ōrite ai a m me -2m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2m-4n=-10,-2m+n+2=7
Whakarūnātia.
-2m+2m-4n-n-2=-10-7
Me tango -2m+n+2=7 mai i -2m-4n=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4n-n-2=-10-7
Tāpiri -2m ki te 2m. Ka whakakore atu ngā kupu -2m me 2m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5n-2=-10-7
Tāpiri -4n ki te -n.
-5n-2=-17
Tāpiri -10 ki te -7.
-5n=-15
Me tāpiri 2 ki ngā taha e rua o te whārite.
n=3
Whakawehea ngā taha e rua ki te -5.
-2m+3+2=7
Whakaurua te 3 mō n ki -2m+n+2=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
-2m+5=7
Tāpiri 3 ki te 2.
-2m=2
Me tango 5 mai i ngā taha e rua o te whārite.
m=-1
Whakawehea ngā taha e rua ki te -2.
m=-1,n=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}