Whakaoti mō x, y (complex solution)
x=\frac{7f+8}{f^{2}-9}
y=\frac{8f+63}{f^{2}-9}
f\neq -3\text{ and }f\neq 3
Whakaoti mō x, y
x=\frac{7f+8}{f^{2}-9}
y=\frac{8f+63}{f^{2}-9}
|f|\neq 3
Graph
Tohaina
Kua tāruatia ki te papatopenga
fx-y=7
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
fy-9x=8
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
fx-y=7,-9x+fy=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
fx-y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
fx=y+7
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{f}\left(y+7\right)
Whakawehea ngā taha e rua ki te f.
x=\frac{1}{f}y+\frac{7}{f}
Whakareatia \frac{1}{f} ki te y+7.
-9\left(\frac{1}{f}y+\frac{7}{f}\right)+fy=8
Whakakapia te \frac{7+y}{f} mō te x ki tērā atu whārite, -9x+fy=8.
\left(-\frac{9}{f}\right)y-\frac{63}{f}+fy=8
Whakareatia -9 ki te \frac{7+y}{f}.
\left(f-\frac{9}{f}\right)y-\frac{63}{f}=8
Tāpiri -\frac{9y}{f} ki te fy.
\left(f-\frac{9}{f}\right)y=8+\frac{63}{f}
Me tāpiri \frac{63}{f} ki ngā taha e rua o te whārite.
y=\frac{8f+63}{f^{2}-9}
Whakawehea ngā taha e rua ki te f-\frac{9}{f}.
x=\frac{1}{f}\times \frac{8f+63}{f^{2}-9}+\frac{7}{f}
Whakaurua te \frac{63+8f}{f^{2}-9} mō y ki x=\frac{1}{f}y+\frac{7}{f}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{8f+63}{f\left(f^{2}-9\right)}+\frac{7}{f}
Whakareatia \frac{1}{f} ki te \frac{63+8f}{f^{2}-9}.
x=\frac{7f+8}{f^{2}-9}
Tāpiri \frac{7}{f} ki te \frac{63+8f}{f\left(f^{2}-9\right)}.
x=\frac{7f+8}{f^{2}-9},y=\frac{8f+63}{f^{2}-9}
Kua oti te pūnaha te whakatau.
fx-y=7
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
fy-9x=8
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
fx-y=7,-9x+fy=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right))\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}f&-1\\-9&f\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{f}{ff-\left(-\left(-9\right)\right)}&-\frac{-1}{ff-\left(-\left(-9\right)\right)}\\-\frac{-9}{ff-\left(-\left(-9\right)\right)}&\frac{f}{ff-\left(-\left(-9\right)\right)}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{f}{f^{2}-9}&\frac{1}{f^{2}-9}\\\frac{9}{f^{2}-9}&\frac{f}{f^{2}-9}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{f}{f^{2}-9}\times 7+\frac{1}{f^{2}-9}\times 8\\\frac{9}{f^{2}-9}\times 7+\frac{f}{f^{2}-9}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7f+8}{f^{2}-9}\\\frac{8f+63}{f^{2}-9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{7f+8}{f^{2}-9},y=\frac{8f+63}{f^{2}-9}
Tangohia ngā huānga poukapa x me y.
fx-y=7
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
fy-9x=8
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
fx-y=7,-9x+fy=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-9fx-9\left(-1\right)y=-9\times 7,f\left(-9\right)x+ffy=f\times 8
Kia ōrite ai a fx me -9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te f.
\left(-9f\right)x+9y=-63,\left(-9f\right)x+f^{2}y=8f
Whakarūnātia.
\left(-9f\right)x+9fx+9y+\left(-f^{2}\right)y=-63-8f
Me tango \left(-9f\right)x+f^{2}y=8f mai i \left(-9f\right)x+9y=-63 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+\left(-f^{2}\right)y=-63-8f
Tāpiri -9fx ki te 9fx. Ka whakakore atu ngā kupu -9fx me 9fx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(9-f^{2}\right)y=-63-8f
Tāpiri 9y ki te -f^{2}y.
\left(9-f^{2}\right)y=-8f-63
Tāpiri -63 ki te -8f.
y=-\frac{8f+63}{9-f^{2}}
Whakawehea ngā taha e rua ki te -f^{2}+9.
-9x+f\left(-\frac{8f+63}{9-f^{2}}\right)=8
Whakaurua te -\frac{63+8f}{9-f^{2}} mō y ki -9x+fy=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-9x-\frac{f\left(8f+63\right)}{9-f^{2}}=8
Whakareatia f ki te -\frac{63+8f}{9-f^{2}}.
-9x=\frac{9\left(7f+8\right)}{\left(3-f\right)\left(f+3\right)}
Me tāpiri \frac{f\left(63+8f\right)}{9-f^{2}} ki ngā taha e rua o te whārite.
x=-\frac{7f+8}{\left(3-f\right)\left(f+3\right)}
Whakawehea ngā taha e rua ki te -9.
x=-\frac{7f+8}{\left(3-f\right)\left(f+3\right)},y=-\frac{8f+63}{9-f^{2}}
Kua oti te pūnaha te whakatau.
fx-y=7
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
fy-9x=8
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
fx-y=7,-9x+fy=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
fx-y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
fx=y+7
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{f}\left(y+7\right)
Whakawehea ngā taha e rua ki te f.
x=\frac{1}{f}y+\frac{7}{f}
Whakareatia \frac{1}{f} ki te y+7.
-9\left(\frac{1}{f}y+\frac{7}{f}\right)+fy=8
Whakakapia te \frac{7+y}{f} mō te x ki tērā atu whārite, -9x+fy=8.
\left(-\frac{9}{f}\right)y-\frac{63}{f}+fy=8
Whakareatia -9 ki te \frac{7+y}{f}.
\left(f-\frac{9}{f}\right)y-\frac{63}{f}=8
Tāpiri -\frac{9y}{f} ki te fy.
\left(f-\frac{9}{f}\right)y=8+\frac{63}{f}
Me tāpiri \frac{63}{f} ki ngā taha e rua o te whārite.
y=\frac{8f+63}{f^{2}-9}
Whakawehea ngā taha e rua ki te f-\frac{9}{f}.
x=\frac{1}{f}\times \frac{8f+63}{f^{2}-9}+\frac{7}{f}
Whakaurua te \frac{63+8f}{f^{2}-9} mō y ki x=\frac{1}{f}y+\frac{7}{f}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{8f+63}{f\left(f^{2}-9\right)}+\frac{7}{f}
Whakareatia \frac{1}{f} ki te \frac{63+8f}{f^{2}-9}.
x=\frac{7f+8}{f^{2}-9}
Tāpiri \frac{7}{f} ki te \frac{63+8f}{f\left(f^{2}-9\right)}.
x=\frac{7f+8}{f^{2}-9},y=\frac{8f+63}{f^{2}-9}
Kua oti te pūnaha te whakatau.
fx-y=7
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
fy-9x=8
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
fx-y=7,-9x+fy=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right))\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}f&-1\\-9&f\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}f&-1\\-9&f\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{f}{ff-\left(-\left(-9\right)\right)}&-\frac{-1}{ff-\left(-\left(-9\right)\right)}\\-\frac{-9}{ff-\left(-\left(-9\right)\right)}&\frac{f}{ff-\left(-\left(-9\right)\right)}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{f}{f^{2}-9}&\frac{1}{f^{2}-9}\\\frac{9}{f^{2}-9}&\frac{f}{f^{2}-9}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{f}{f^{2}-9}\times 7+\frac{1}{f^{2}-9}\times 8\\\frac{9}{f^{2}-9}\times 7+\frac{f}{f^{2}-9}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7f+8}{f^{2}-9}\\\frac{8f+63}{f^{2}-9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{7f+8}{f^{2}-9},y=\frac{8f+63}{f^{2}-9}
Tangohia ngā huānga poukapa x me y.
fx-y=7
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
fy-9x=8
Whakaarohia te whārite tuarua. Tangohia te 9x mai i ngā taha e rua.
fx-y=7,-9x+fy=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-9fx-9\left(-1\right)y=-9\times 7,f\left(-9\right)x+ffy=f\times 8
Kia ōrite ai a fx me -9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te f.
\left(-9f\right)x+9y=-63,\left(-9f\right)x+f^{2}y=8f
Whakarūnātia.
\left(-9f\right)x+9fx+9y+\left(-f^{2}\right)y=-63-8f
Me tango \left(-9f\right)x+f^{2}y=8f mai i \left(-9f\right)x+9y=-63 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+\left(-f^{2}\right)y=-63-8f
Tāpiri -9fx ki te 9fx. Ka whakakore atu ngā kupu -9fx me 9fx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(9-f^{2}\right)y=-63-8f
Tāpiri 9y ki te -f^{2}y.
\left(9-f^{2}\right)y=-8f-63
Tāpiri -63 ki te -8f.
y=-\frac{8f+63}{9-f^{2}}
Whakawehea ngā taha e rua ki te -f^{2}+9.
-9x+f\left(-\frac{8f+63}{9-f^{2}}\right)=8
Whakaurua te -\frac{63+8f}{9-f^{2}} mō y ki -9x+fy=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-9x-\frac{f\left(8f+63\right)}{9-f^{2}}=8
Whakareatia f ki te -\frac{63+8f}{9-f^{2}}.
-9x=\frac{9\left(7f+8\right)}{\left(3-f\right)\left(f+3\right)}
Me tāpiri \frac{f\left(63+8f\right)}{9-f^{2}} ki ngā taha e rua o te whārite.
x=-\frac{7f+8}{\left(3-f\right)\left(f+3\right)}
Whakawehea ngā taha e rua ki te -9.
x=-\frac{7f+8}{\left(3-f\right)\left(f+3\right)},y=-\frac{8f+63}{9-f^{2}}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}