Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12bx-15y=-4,16x+10y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
12bx-15y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
12bx=15y-4
Me tāpiri 15y ki ngā taha e rua o te whārite.
x=\frac{1}{12b}\left(15y-4\right)
Whakawehea ngā taha e rua ki te 12b.
x=\frac{5}{4b}y-\frac{1}{3b}
Whakareatia \frac{1}{12b} ki te 15y-4.
16\left(\frac{5}{4b}y-\frac{1}{3b}\right)+10y=7
Whakakapia te \frac{-4+15y}{12b} mō te x ki tērā atu whārite, 16x+10y=7.
\frac{20}{b}y-\frac{16}{3b}+10y=7
Whakareatia 16 ki te \frac{-4+15y}{12b}.
\left(10+\frac{20}{b}\right)y-\frac{16}{3b}=7
Tāpiri \frac{20y}{b} ki te 10y.
\left(10+\frac{20}{b}\right)y=7+\frac{16}{3b}
Me tāpiri \frac{16}{3b} ki ngā taha e rua o te whārite.
y=\frac{21b+16}{30\left(b+2\right)}
Whakawehea ngā taha e rua ki te \frac{20}{b}+10.
x=\frac{5}{4b}\times \frac{21b+16}{30\left(b+2\right)}-\frac{1}{3b}
Whakaurua te \frac{16+21b}{30\left(2+b\right)} mō y ki x=\frac{5}{4b}y-\frac{1}{3b}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{21b+16}{24b\left(b+2\right)}-\frac{1}{3b}
Whakareatia \frac{5}{4b} ki te \frac{16+21b}{30\left(2+b\right)}.
x=\frac{13}{24\left(b+2\right)}
Tāpiri -\frac{1}{3b} ki te \frac{16+21b}{24b\left(2+b\right)}.
x=\frac{13}{24\left(b+2\right)},y=\frac{21b+16}{30\left(b+2\right)}
Kua oti te pūnaha te whakatau.
12bx-15y=-4,16x+10y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}12b&-15\\16&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}12b&-15\\16&10\end{matrix}\right))\left(\begin{matrix}12b&-15\\16&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12b&-15\\16&10\end{matrix}\right))\left(\begin{matrix}-4\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}12b&-15\\16&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12b&-15\\16&10\end{matrix}\right))\left(\begin{matrix}-4\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12b&-15\\16&10\end{matrix}\right))\left(\begin{matrix}-4\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{12b\times 10-\left(-15\times 16\right)}&-\frac{-15}{12b\times 10-\left(-15\times 16\right)}\\-\frac{16}{12b\times 10-\left(-15\times 16\right)}&\frac{12b}{12b\times 10-\left(-15\times 16\right)}\end{matrix}\right)\left(\begin{matrix}-4\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12\left(b+2\right)}&\frac{1}{8\left(b+2\right)}\\-\frac{2}{15\left(b+2\right)}&\frac{b}{10\left(b+2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12\left(b+2\right)}\left(-4\right)+\frac{1}{8\left(b+2\right)}\times 7\\\left(-\frac{2}{15\left(b+2\right)}\right)\left(-4\right)+\frac{b}{10\left(b+2\right)}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{24\left(b+2\right)}\\\frac{21b+16}{30\left(b+2\right)}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{13}{24\left(b+2\right)},y=\frac{21b+16}{30\left(b+2\right)}
Tangohia ngā huānga poukapa x me y.
12bx-15y=-4,16x+10y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
16\times 12bx+16\left(-15\right)y=16\left(-4\right),12b\times 16x+12b\times 10y=12b\times 7
Kia ōrite ai a 12bx me 16x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 16 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 12b.
192bx-240y=-64,192bx+120by=84b
Whakarūnātia.
192bx+\left(-192b\right)x-240y+\left(-120b\right)y=-64-84b
Me tango 192bx+120by=84b mai i 192bx-240y=-64 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-240y+\left(-120b\right)y=-64-84b
Tāpiri 192bx ki te -192bx. Ka whakakore atu ngā kupu 192bx me -192bx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(-120b-240\right)y=-64-84b
Tāpiri -240y ki te -120by.
\left(-120b-240\right)y=-84b-64
Tāpiri -64 ki te -84b.
y=\frac{21b+16}{30\left(b+2\right)}
Whakawehea ngā taha e rua ki te -240-120b.
16x+10\times \frac{21b+16}{30\left(b+2\right)}=7
Whakaurua te \frac{16+21b}{30\left(2+b\right)} mō y ki 16x+10y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
16x+\frac{21b+16}{3\left(b+2\right)}=7
Whakareatia 10 ki te \frac{16+21b}{30\left(2+b\right)}.
16x=\frac{26}{3\left(b+2\right)}
Me tango \frac{16+21b}{3\left(2+b\right)} mai i ngā taha e rua o te whārite.
x=\frac{13}{24\left(b+2\right)}
Whakawehea ngā taha e rua ki te 16.
x=\frac{13}{24\left(b+2\right)},y=\frac{21b+16}{30\left(b+2\right)}
Kua oti te pūnaha te whakatau.