Whakaoti mō x, y
x=\frac{a+\sqrt{2}+3}{a+4}
y=\frac{a^{2}+\sqrt{2}a-12}{a+4}
a\neq -4
Graph
Tohaina
Kua tāruatia ki te papatopenga
a-4x+\sqrt{2}-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
-4x+\sqrt{2}-y=-a
Tangohia te a mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-4x-y=-a-\sqrt{2}
Tangohia te \sqrt{2} mai i ngā taha e rua.
ax-y=3,-4x-y=-a-\sqrt{2}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
ax-y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
ax=y+3
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{a}\left(y+3\right)
Whakawehea ngā taha e rua ki te a.
x=\frac{1}{a}y+\frac{3}{a}
Whakareatia \frac{1}{a} ki te y+3.
-4\left(\frac{1}{a}y+\frac{3}{a}\right)-y=-a-\sqrt{2}
Whakakapia te \frac{3+y}{a} mō te x ki tērā atu whārite, -4x-y=-a-\sqrt{2}.
\left(-\frac{4}{a}\right)y-\frac{12}{a}-y=-a-\sqrt{2}
Whakareatia -4 ki te \frac{3+y}{a}.
\left(-1-\frac{4}{a}\right)y-\frac{12}{a}=-a-\sqrt{2}
Tāpiri -\frac{4y}{a} ki te -y.
\left(-1-\frac{4}{a}\right)y=-a-\sqrt{2}+\frac{12}{a}
Me tāpiri \frac{12}{a} ki ngā taha e rua o te whārite.
y=-\frac{-a^{2}-\sqrt{2}a+12}{a+4}
Whakawehea ngā taha e rua ki te -\frac{4}{a}-1.
x=\frac{1}{a}\left(-\frac{-a^{2}-\sqrt{2}a+12}{a+4}\right)+\frac{3}{a}
Whakaurua te -\frac{12-\sqrt{2}a-a^{2}}{4+a} mō y ki x=\frac{1}{a}y+\frac{3}{a}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{-a^{2}-\sqrt{2}a+12}{a\left(a+4\right)}+\frac{3}{a}
Whakareatia \frac{1}{a} ki te -\frac{12-\sqrt{2}a-a^{2}}{4+a}.
x=\frac{a+\sqrt{2}+3}{a+4}
Tāpiri \frac{3}{a} ki te -\frac{12-\sqrt{2}a-a^{2}}{a\left(4+a\right)}.
x=\frac{a+\sqrt{2}+3}{a+4},y=-\frac{-a^{2}-\sqrt{2}a+12}{a+4}
Kua oti te pūnaha te whakatau.
a-4x+\sqrt{2}-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
-4x+\sqrt{2}-y=-a
Tangohia te a mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-4x-y=-a-\sqrt{2}
Tangohia te \sqrt{2} mai i ngā taha e rua.
ax-y=3,-4x-y=-a-\sqrt{2}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
ax+4x-y+y=3+a+\sqrt{2}
Me tango -4x-y=-a-\sqrt{2} mai i ax-y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
ax+4x=3+a+\sqrt{2}
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(a+4\right)x=3+a+\sqrt{2}
Tāpiri ax ki te 4x.
\left(a+4\right)x=a+\sqrt{2}+3
Tāpiri 3 ki te a+\sqrt{2}.
x=\frac{a+\sqrt{2}+3}{a+4}
Whakawehea ngā taha e rua ki te a+4.
-4\times \frac{a+\sqrt{2}+3}{a+4}-y=-a-\sqrt{2}
Whakaurua te \frac{3+a+\sqrt{2}}{a+4} mō x ki -4x-y=-a-\sqrt{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-\frac{4\left(a+\sqrt{2}+3\right)}{a+4}-y=-a-\sqrt{2}
Whakareatia -4 ki te \frac{3+a+\sqrt{2}}{a+4}.
-y=\frac{-a^{2}-\sqrt{2}a+12}{a+4}
Me tāpiri \frac{4\left(3+a+\sqrt{2}\right)}{a+4} ki ngā taha e rua o te whārite.
y=-\frac{-a^{2}-\sqrt{2}a+12}{a+4}
Whakawehea ngā taha e rua ki te -1.
x=\frac{a+\sqrt{2}+3}{a+4},y=-\frac{-a^{2}-\sqrt{2}a+12}{a+4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}