Whakaoti mō a, b
a=\frac{\sqrt{10}}{2}+2\approx 3.58113883\text{, }b=-\frac{\sqrt{10}}{2}+2\approx 0.41886117
a=-\frac{\sqrt{10}}{2}+2\approx 0.41886117\text{, }b=\frac{\sqrt{10}}{2}+2\approx 3.58113883
Tohaina
Kua tāruatia ki te papatopenga
a+b=4,b^{2}+a^{2}=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+b=4
Whakaotia te a+b=4 mō a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+4
Me tango b mai i ngā taha e rua o te whārite.
b^{2}+\left(-b+4\right)^{2}=13
Whakakapia te -b+4 mō te a ki tērā atu whārite, b^{2}+a^{2}=13.
b^{2}+b^{2}-8b+16=13
Pūrua -b+4.
2b^{2}-8b+16=13
Tāpiri b^{2} ki te b^{2}.
2b^{2}-8b+3=0
Me tango 13 mai i ngā taha e rua o te whārite.
b=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 3}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 4\left(-1\right)\times 2 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 3}}{2\times 2}
Pūrua 1\times 4\left(-1\right)\times 2.
b=\frac{-\left(-8\right)±\sqrt{64-8\times 3}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
b=\frac{-\left(-8\right)±\sqrt{64-24}}{2\times 2}
Whakareatia -8 ki te 3.
b=\frac{-\left(-8\right)±\sqrt{40}}{2\times 2}
Tāpiri 64 ki te -24.
b=\frac{-\left(-8\right)±2\sqrt{10}}{2\times 2}
Tuhia te pūtakerua o te 40.
b=\frac{8±2\sqrt{10}}{2\times 2}
Ko te tauaro o 1\times 4\left(-1\right)\times 2 ko 8.
b=\frac{8±2\sqrt{10}}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
b=\frac{2\sqrt{10}+8}{4}
Nā, me whakaoti te whārite b=\frac{8±2\sqrt{10}}{4} ina he tāpiri te ±. Tāpiri 8 ki te 2\sqrt{10}.
b=\frac{\sqrt{10}}{2}+2
Whakawehe 8+2\sqrt{10} ki te 4.
b=\frac{8-2\sqrt{10}}{4}
Nā, me whakaoti te whārite b=\frac{8±2\sqrt{10}}{4} ina he tango te ±. Tango 2\sqrt{10} mai i 8.
b=-\frac{\sqrt{10}}{2}+2
Whakawehe 8-2\sqrt{10} ki te 4.
a=-\left(\frac{\sqrt{10}}{2}+2\right)+4
E rua ngā otinga mō b: 2+\frac{\sqrt{10}}{2} me 2-\frac{\sqrt{10}}{2}. Me whakakapi 2+\frac{\sqrt{10}}{2} mō b ki te whārite a=-b+4 hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=-\left(-\frac{\sqrt{10}}{2}+2\right)+4
Me whakakapi te 2-\frac{\sqrt{10}}{2} ināianei mō te b ki te whārite a=-b+4 ka whakaoti hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=-\left(\frac{\sqrt{10}}{2}+2\right)+4,b=\frac{\sqrt{10}}{2}+2\text{ or }a=-\left(-\frac{\sqrt{10}}{2}+2\right)+4,b=-\frac{\sqrt{10}}{2}+2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}