Whakaoti mō a, x
x = \frac{160}{17} = 9\frac{7}{17} \approx 9.411764706
a = \frac{2560}{17} = 150\frac{10}{17} \approx 150.588235294
Graph
Tohaina
Kua tāruatia ki te papatopenga
a=x\times 16
Whakaarohia te whārite tuatahi. Whakawehea te 96 ki te 6, kia riro ko 16.
a-x\times 16=0
Tangohia te x\times 16 mai i ngā taha e rua.
a-16x=0
Whakareatia te -1 ki te 16, ka -16.
160-a=x+10\times 16\times 0
Whakaarohia te whārite tuarua. Whakawehea te 96 ki te 6, kia riro ko 16.
160-a=x+160\times 0
Whakareatia te 10 ki te 16, ka 160.
160-a=x+0
Whakareatia te 160 ki te 0, ka 0.
160-a=x
Ko te tau i tāpiria he kore ka hua koia tonu.
160-a-x=0
Tangohia te x mai i ngā taha e rua.
-a-x=-160
Tangohia te 160 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
a-16x=0,-a-x=-160
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a-16x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=16x
Me tāpiri 16x ki ngā taha e rua o te whārite.
-16x-x=-160
Whakakapia te 16x mō te a ki tērā atu whārite, -a-x=-160.
-17x=-160
Tāpiri -16x ki te -x.
x=\frac{160}{17}
Whakawehea ngā taha e rua ki te -17.
a=16\times \frac{160}{17}
Whakaurua te \frac{160}{17} mō x ki a=16x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{2560}{17}
Whakareatia 16 ki te \frac{160}{17}.
a=\frac{2560}{17},x=\frac{160}{17}
Kua oti te pūnaha te whakatau.
a=x\times 16
Whakaarohia te whārite tuatahi. Whakawehea te 96 ki te 6, kia riro ko 16.
a-x\times 16=0
Tangohia te x\times 16 mai i ngā taha e rua.
a-16x=0
Whakareatia te -1 ki te 16, ka -16.
160-a=x+10\times 16\times 0
Whakaarohia te whārite tuarua. Whakawehea te 96 ki te 6, kia riro ko 16.
160-a=x+160\times 0
Whakareatia te 10 ki te 16, ka 160.
160-a=x+0
Whakareatia te 160 ki te 0, ka 0.
160-a=x
Ko te tau i tāpiria he kore ka hua koia tonu.
160-a-x=0
Tangohia te x mai i ngā taha e rua.
-a-x=-160
Tangohia te 160 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
a-16x=0,-a-x=-160
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}0\\-160\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-160\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-160\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-160\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-16\left(-1\right)\right)}&-\frac{-16}{-1-\left(-16\left(-1\right)\right)}\\-\frac{-1}{-1-\left(-16\left(-1\right)\right)}&\frac{1}{-1-\left(-16\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-160\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&-\frac{16}{17}\\-\frac{1}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}0\\-160\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{16}{17}\left(-160\right)\\-\frac{1}{17}\left(-160\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2560}{17}\\\frac{160}{17}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{2560}{17},x=\frac{160}{17}
Tangohia ngā huānga poukapa a me x.
a=x\times 16
Whakaarohia te whārite tuatahi. Whakawehea te 96 ki te 6, kia riro ko 16.
a-x\times 16=0
Tangohia te x\times 16 mai i ngā taha e rua.
a-16x=0
Whakareatia te -1 ki te 16, ka -16.
160-a=x+10\times 16\times 0
Whakaarohia te whārite tuarua. Whakawehea te 96 ki te 6, kia riro ko 16.
160-a=x+160\times 0
Whakareatia te 10 ki te 16, ka 160.
160-a=x+0
Whakareatia te 160 ki te 0, ka 0.
160-a=x
Ko te tau i tāpiria he kore ka hua koia tonu.
160-a-x=0
Tangohia te x mai i ngā taha e rua.
-a-x=-160
Tangohia te 160 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
a-16x=0,-a-x=-160
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-a-\left(-16x\right)=0,-a-x=-160
Kia ōrite ai a a me -a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-a+16x=0,-a-x=-160
Whakarūnātia.
-a+a+16x+x=160
Me tango -a-x=-160 mai i -a+16x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16x+x=160
Tāpiri -a ki te a. Ka whakakore atu ngā kupu -a me a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17x=160
Tāpiri 16x ki te x.
x=\frac{160}{17}
Whakawehea ngā taha e rua ki te 17.
-a-\frac{160}{17}=-160
Whakaurua te \frac{160}{17} mō x ki -a-x=-160. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
-a=-\frac{2560}{17}
Me tāpiri \frac{160}{17} ki ngā taha e rua o te whārite.
a=\frac{2560}{17}
Whakawehea ngā taha e rua ki te -1.
a=\frac{2560}{17},x=\frac{160}{17}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}