Whakaoti mō a, x
x = \frac{720}{13} = 55\frac{5}{13} \approx 55.384615385
a = \frac{1152}{13} = 88\frac{8}{13} \approx 88.615384615
Graph
Tohaina
Kua tāruatia ki te papatopenga
a=x\times \frac{8}{5}
Whakaarohia te whārite tuatahi. Whakahekea te hautanga \frac{96}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
a-x\times \frac{8}{5}=0
Tangohia te x\times \frac{8}{5} mai i ngā taha e rua.
a-\frac{8}{5}x=0
Whakareatia te -1 ki te \frac{8}{5}, ka -\frac{8}{5}.
160-a=x+10\times \frac{8}{5}
Whakaarohia te whārite tuarua. Whakahekea te hautanga \frac{96}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
160-a=x+16
Whakareatia te 10 ki te \frac{8}{5}, ka 16.
160-a-x=16
Tangohia te x mai i ngā taha e rua.
-a-x=16-160
Tangohia te 160 mai i ngā taha e rua.
-a-x=-144
Tangohia te 160 i te 16, ka -144.
a-\frac{8}{5}x=0,-a-x=-144
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a-\frac{8}{5}x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=\frac{8}{5}x
Me tāpiri \frac{8x}{5} ki ngā taha e rua o te whārite.
-\frac{8}{5}x-x=-144
Whakakapia te \frac{8x}{5} mō te a ki tērā atu whārite, -a-x=-144.
-\frac{13}{5}x=-144
Tāpiri -\frac{8x}{5} ki te -x.
x=\frac{720}{13}
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=\frac{8}{5}\times \frac{720}{13}
Whakaurua te \frac{720}{13} mō x ki a=\frac{8}{5}x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{1152}{13}
Whakareatia \frac{8}{5} ki te \frac{720}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{1152}{13},x=\frac{720}{13}
Kua oti te pūnaha te whakatau.
a=x\times \frac{8}{5}
Whakaarohia te whārite tuatahi. Whakahekea te hautanga \frac{96}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
a-x\times \frac{8}{5}=0
Tangohia te x\times \frac{8}{5} mai i ngā taha e rua.
a-\frac{8}{5}x=0
Whakareatia te -1 ki te \frac{8}{5}, ka -\frac{8}{5}.
160-a=x+10\times \frac{8}{5}
Whakaarohia te whārite tuarua. Whakahekea te hautanga \frac{96}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
160-a=x+16
Whakareatia te 10 ki te \frac{8}{5}, ka 16.
160-a-x=16
Tangohia te x mai i ngā taha e rua.
-a-x=16-160
Tangohia te 160 mai i ngā taha e rua.
-a-x=-144
Tangohia te 160 i te 16, ka -144.
a-\frac{8}{5}x=0,-a-x=-144
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}0\\-144\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-144\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-144\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{8}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-144\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-\frac{8}{5}\left(-1\right)\right)}&-\frac{-\frac{8}{5}}{-1-\left(-\frac{8}{5}\left(-1\right)\right)}\\-\frac{-1}{-1-\left(-\frac{8}{5}\left(-1\right)\right)}&\frac{1}{-1-\left(-\frac{8}{5}\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-144\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{13}&-\frac{8}{13}\\-\frac{5}{13}&-\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}0\\-144\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{13}\left(-144\right)\\-\frac{5}{13}\left(-144\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1152}{13}\\\frac{720}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{1152}{13},x=\frac{720}{13}
Tangohia ngā huānga poukapa a me x.
a=x\times \frac{8}{5}
Whakaarohia te whārite tuatahi. Whakahekea te hautanga \frac{96}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
a-x\times \frac{8}{5}=0
Tangohia te x\times \frac{8}{5} mai i ngā taha e rua.
a-\frac{8}{5}x=0
Whakareatia te -1 ki te \frac{8}{5}, ka -\frac{8}{5}.
160-a=x+10\times \frac{8}{5}
Whakaarohia te whārite tuarua. Whakahekea te hautanga \frac{96}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
160-a=x+16
Whakareatia te 10 ki te \frac{8}{5}, ka 16.
160-a-x=16
Tangohia te x mai i ngā taha e rua.
-a-x=16-160
Tangohia te 160 mai i ngā taha e rua.
-a-x=-144
Tangohia te 160 i te 16, ka -144.
a-\frac{8}{5}x=0,-a-x=-144
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-a-\left(-\frac{8}{5}x\right)=0,-a-x=-144
Kia ōrite ai a a me -a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-a+\frac{8}{5}x=0,-a-x=-144
Whakarūnātia.
-a+a+\frac{8}{5}x+x=144
Me tango -a-x=-144 mai i -a+\frac{8}{5}x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{8}{5}x+x=144
Tāpiri -a ki te a. Ka whakakore atu ngā kupu -a me a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{13}{5}x=144
Tāpiri \frac{8x}{5} ki te x.
x=\frac{720}{13}
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-a-\frac{720}{13}=-144
Whakaurua te \frac{720}{13} mō x ki -a-x=-144. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
-a=-\frac{1152}{13}
Me tāpiri \frac{720}{13} ki ngā taha e rua o te whārite.
a=\frac{1152}{13}
Whakawehea ngā taha e rua ki te -1.
a=\frac{1152}{13},x=\frac{720}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}