Whakaoti mō a, b
a=3+\sqrt{6}i\approx 3+2.449489743i\text{, }b=-\sqrt{6}i+3\approx 3-2.449489743i
a=-\sqrt{6}i+3\approx 3-2.449489743i\text{, }b=3+\sqrt{6}i\approx 3+2.449489743i
Tohaina
Kua tāruatia ki te papatopenga
a+b=6
Whakaotia te a+b=6 mō a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+6
Me tango b mai i ngā taha e rua o te whārite.
b^{2}+\left(-b+6\right)^{2}=6
Whakakapia te -b+6 mō te a ki tērā atu whārite, b^{2}+a^{2}=6.
b^{2}+b^{2}-12b+36=6
Pūrua -b+6.
2b^{2}-12b+36=6
Tāpiri b^{2} ki te b^{2}.
2b^{2}-12b+30=0
Me tango 6 mai i ngā taha e rua o te whārite.
b=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 30}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 6\left(-1\right)\times 2 mō b, me 30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 30}}{2\times 2}
Pūrua 1\times 6\left(-1\right)\times 2.
b=\frac{-\left(-12\right)±\sqrt{144-8\times 30}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
b=\frac{-\left(-12\right)±\sqrt{144-240}}{2\times 2}
Whakareatia -8 ki te 30.
b=\frac{-\left(-12\right)±\sqrt{-96}}{2\times 2}
Tāpiri 144 ki te -240.
b=\frac{-\left(-12\right)±4\sqrt{6}i}{2\times 2}
Tuhia te pūtakerua o te -96.
b=\frac{12±4\sqrt{6}i}{2\times 2}
Ko te tauaro o 1\times 6\left(-1\right)\times 2 ko 12.
b=\frac{12±4\sqrt{6}i}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
b=\frac{12+4\sqrt{6}i}{4}
Nā, me whakaoti te whārite b=\frac{12±4\sqrt{6}i}{4} ina he tāpiri te ±. Tāpiri 12 ki te 4i\sqrt{6}.
b=3+\sqrt{6}i
Whakawehe 12+4i\sqrt{6} ki te 4.
b=\frac{-4\sqrt{6}i+12}{4}
Nā, me whakaoti te whārite b=\frac{12±4\sqrt{6}i}{4} ina he tango te ±. Tango 4i\sqrt{6} mai i 12.
b=-\sqrt{6}i+3
Whakawehe 12-4i\sqrt{6} ki te 4.
a=-\left(3+\sqrt{6}i\right)+6
E rua ngā otinga mō b: 3+i\sqrt{6} me 3-i\sqrt{6}. Me whakakapi 3+i\sqrt{6} mō b ki te whārite a=-b+6 hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=-\left(-\sqrt{6}i+3\right)+6
Me whakakapi te 3-i\sqrt{6} ināianei mō te b ki te whārite a=-b+6 ka whakaoti hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=-\left(3+\sqrt{6}i\right)+6,b=3+\sqrt{6}i\text{ or }a=-\left(-\sqrt{6}i+3\right)+6,b=-\sqrt{6}i+3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}