Whakaoti mō a, b
a = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
b = \frac{41}{3} = 13\frac{2}{3} \approx 13.666666667
Tohaina
Kua tāruatia ki te papatopenga
a+2b=29,2a+b=17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+2b=29
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-2b+29
Me tango 2b mai i ngā taha e rua o te whārite.
2\left(-2b+29\right)+b=17
Whakakapia te -2b+29 mō te a ki tērā atu whārite, 2a+b=17.
-4b+58+b=17
Whakareatia 2 ki te -2b+29.
-3b+58=17
Tāpiri -4b ki te b.
-3b=-41
Me tango 58 mai i ngā taha e rua o te whārite.
b=\frac{41}{3}
Whakawehea ngā taha e rua ki te -3.
a=-2\times \frac{41}{3}+29
Whakaurua te \frac{41}{3} mō b ki a=-2b+29. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-\frac{82}{3}+29
Whakareatia -2 ki te \frac{41}{3}.
a=\frac{5}{3}
Tāpiri 29 ki te -\frac{82}{3}.
a=\frac{5}{3},b=\frac{41}{3}
Kua oti te pūnaha te whakatau.
a+2b=29,2a+b=17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}29\\17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}29\\17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}29\\17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}29\\17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 2}&-\frac{2}{1-2\times 2}\\-\frac{2}{1-2\times 2}&\frac{1}{1-2\times 2}\end{matrix}\right)\left(\begin{matrix}29\\17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}29\\17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 29+\frac{2}{3}\times 17\\\frac{2}{3}\times 29-\frac{1}{3}\times 17\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{41}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{5}{3},b=\frac{41}{3}
Tangohia ngā huānga poukapa a me b.
a+2b=29,2a+b=17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2a+2\times 2b=2\times 29,2a+b=17
Kia ōrite ai a a me 2a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2a+4b=58,2a+b=17
Whakarūnātia.
2a-2a+4b-b=58-17
Me tango 2a+b=17 mai i 2a+4b=58 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4b-b=58-17
Tāpiri 2a ki te -2a. Ka whakakore atu ngā kupu 2a me -2a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3b=58-17
Tāpiri 4b ki te -b.
3b=41
Tāpiri 58 ki te -17.
b=\frac{41}{3}
Whakawehea ngā taha e rua ki te 3.
2a+\frac{41}{3}=17
Whakaurua te \frac{41}{3} mō b ki 2a+b=17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
2a=\frac{10}{3}
Me tango \frac{41}{3} mai i ngā taha e rua o te whārite.
a=\frac{5}{3}
Whakawehea ngā taha e rua ki te 2.
a=\frac{5}{3},b=\frac{41}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}