Whakaoti mō X, y
y=\frac{6}{13}\approx 0.461538462
X = \frac{20}{13} = 1\frac{7}{13} \approx 1.538461538
Graph
Tohaina
Kua tāruatia ki te papatopenga
60X-200y=0
Whakaarohia te whārite tuarua. Tangohia te 200y mai i ngā taha e rua.
X+y=2,60X-200y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
X+y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te X mā te wehe i te X i te taha mauī o te tohu ōrite.
X=-y+2
Me tango y mai i ngā taha e rua o te whārite.
60\left(-y+2\right)-200y=0
Whakakapia te -y+2 mō te X ki tērā atu whārite, 60X-200y=0.
-60y+120-200y=0
Whakareatia 60 ki te -y+2.
-260y+120=0
Tāpiri -60y ki te -200y.
-260y=-120
Me tango 120 mai i ngā taha e rua o te whārite.
y=\frac{6}{13}
Whakawehea ngā taha e rua ki te -260.
X=-\frac{6}{13}+2
Whakaurua te \frac{6}{13} mō y ki X=-y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō X hāngai tonu.
X=\frac{20}{13}
Tāpiri 2 ki te -\frac{6}{13}.
X=\frac{20}{13},y=\frac{6}{13}
Kua oti te pūnaha te whakatau.
60X-200y=0
Whakaarohia te whārite tuarua. Tangohia te 200y mai i ngā taha e rua.
X+y=2,60X-200y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\60&-200\end{matrix}\right)\left(\begin{matrix}X\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\60&-200\end{matrix}\right))\left(\begin{matrix}1&1\\60&-200\end{matrix}\right)\left(\begin{matrix}X\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&-200\end{matrix}\right))\left(\begin{matrix}2\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\60&-200\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}X\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&-200\end{matrix}\right))\left(\begin{matrix}2\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}X\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&-200\end{matrix}\right))\left(\begin{matrix}2\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}X\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{200}{-200-60}&-\frac{1}{-200-60}\\-\frac{60}{-200-60}&\frac{1}{-200-60}\end{matrix}\right)\left(\begin{matrix}2\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}X\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{13}&\frac{1}{260}\\\frac{3}{13}&-\frac{1}{260}\end{matrix}\right)\left(\begin{matrix}2\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}X\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{13}\times 2\\\frac{3}{13}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}X\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{13}\\\frac{6}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
X=\frac{20}{13},y=\frac{6}{13}
Tangohia ngā huānga poukapa X me y.
60X-200y=0
Whakaarohia te whārite tuarua. Tangohia te 200y mai i ngā taha e rua.
X+y=2,60X-200y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
60X+60y=60\times 2,60X-200y=0
Kia ōrite ai a X me 60X, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 60 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
60X+60y=120,60X-200y=0
Whakarūnātia.
60X-60X+60y+200y=120
Me tango 60X-200y=0 mai i 60X+60y=120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
60y+200y=120
Tāpiri 60X ki te -60X. Ka whakakore atu ngā kupu 60X me -60X, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
260y=120
Tāpiri 60y ki te 200y.
y=\frac{6}{13}
Whakawehea ngā taha e rua ki te 260.
60X-200\times \frac{6}{13}=0
Whakaurua te \frac{6}{13} mō y ki 60X-200y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō X hāngai tonu.
60X-\frac{1200}{13}=0
Whakareatia -200 ki te \frac{6}{13}.
60X=\frac{1200}{13}
Me tāpiri \frac{1200}{13} ki ngā taha e rua o te whārite.
X=\frac{20}{13}
Whakawehea ngā taha e rua ki te 60.
X=\frac{20}{13},y=\frac{6}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}