Whakaoti mō x, y
x=\frac{4\left(S-18\right)}{9}
y=\frac{S}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
S=3y
Whakaarohia te whārite tuatahi. Whakareatia te \frac{1}{2} ki te 6, ka 3.
3y=S
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y-\frac{3}{4}x=6
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{4}x mai i ngā taha e rua.
3y=S,y-\frac{3}{4}x=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3y=S
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=\frac{S}{3}
Whakawehea ngā taha e rua ki te 3.
\frac{S}{3}-\frac{3}{4}x=6
Whakakapia te \frac{S}{3} mō te y ki tērā atu whārite, y-\frac{3}{4}x=6.
-\frac{3}{4}x=-\frac{S}{3}+6
Me tango \frac{S}{3} mai i ngā taha e rua o te whārite.
x=\frac{4S}{9}-8
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{S}{3},x=\frac{4S}{9}-8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}