Whakaoti mō I_p, I_c
I_{p}=0.336
I_{c}=0.664
Tohaina
Kua tāruatia ki te papatopenga
I_{p}=\frac{2.1\times 10^{-1}\times 1.6}{1}
Whakaarohia te whārite tuatahi. Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 18 me te -19 kia riro ai te -1.
I_{p}=\frac{2.1\times \frac{1}{10}\times 1.6}{1}
Tātaihia te 10 mā te pū o -1, kia riro ko \frac{1}{10}.
I_{p}=\frac{\frac{21}{100}\times 1.6}{1}
Whakareatia te 2.1 ki te \frac{1}{10}, ka \frac{21}{100}.
I_{p}=\frac{\frac{42}{125}}{1}
Whakareatia te \frac{21}{100} ki te 1.6, ka \frac{42}{125}.
I_{p}=\frac{42}{125}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
I_{c}=\frac{1.6\times 10^{-1}\times 4.15}{1}
Whakaarohia te whārite tuarua. Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -19 me te 18 kia riro ai te -1.
I_{c}=\frac{1.6\times \frac{1}{10}\times 4.15}{1}
Tātaihia te 10 mā te pū o -1, kia riro ko \frac{1}{10}.
I_{c}=\frac{\frac{4}{25}\times 4.15}{1}
Whakareatia te 1.6 ki te \frac{1}{10}, ka \frac{4}{25}.
I_{c}=\frac{\frac{83}{125}}{1}
Whakareatia te \frac{4}{25} ki te 4.15, ka \frac{83}{125}.
I_{c}=\frac{83}{125}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
I_{p}=\frac{42}{125} I_{c}=\frac{83}{125}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}