Whakaoti mō F, x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
F = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-3x=9
Whakaarohia te whārite tuarua. Tangohia te 3x mai i ngā taha e rua.
6x=9
Pahekotia te 9x me -3x, ka 6x.
x=\frac{9}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{3}{2}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
F\times \frac{3}{2}=2\times \frac{3}{2}-1
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
F\times \frac{3}{2}=3-1
Whakareatia te 2 ki te \frac{3}{2}, ka 3.
F\times \frac{3}{2}=2
Tangohia te 1 i te 3, ka 2.
F=2\times \frac{2}{3}
Me whakarea ngā taha e rua ki te \frac{2}{3}, te tau utu o \frac{3}{2}.
F=\frac{4}{3}
Whakareatia te 2 ki te \frac{2}{3}, ka \frac{4}{3}.
F=\frac{4}{3} x=\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}