Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

Cx+y=69,2x+y=87
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
Cx+y=69
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
Cx=-y+69
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{C}\left(-y+69\right)
Whakawehea ngā taha e rua ki te C.
x=\left(-\frac{1}{C}\right)y+\frac{69}{C}
Whakareatia \frac{1}{C} ki te -y+69.
2\left(\left(-\frac{1}{C}\right)y+\frac{69}{C}\right)+y=87
Whakakapia te \frac{69-y}{C} mō te x ki tērā atu whārite, 2x+y=87.
\left(-\frac{2}{C}\right)y+\frac{138}{C}+y=87
Whakareatia 2 ki te \frac{69-y}{C}.
\frac{C-2}{C}y+\frac{138}{C}=87
Tāpiri -\frac{2y}{C} ki te y.
\frac{C-2}{C}y=87-\frac{138}{C}
Me tango \frac{138}{C} mai i ngā taha e rua o te whārite.
y=\frac{3\left(29C-46\right)}{C-2}
Whakawehea ngā taha e rua ki te \frac{-2+C}{C}.
x=\left(-\frac{1}{C}\right)\times \frac{3\left(29C-46\right)}{C-2}+\frac{69}{C}
Whakaurua te \frac{3\left(-46+29C\right)}{-2+C} mō y ki x=\left(-\frac{1}{C}\right)y+\frac{69}{C}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{3\left(29C-46\right)}{C\left(C-2\right)}+\frac{69}{C}
Whakareatia -\frac{1}{C} ki te \frac{3\left(-46+29C\right)}{-2+C}.
x=-\frac{18}{C-2}
Tāpiri \frac{69}{C} ki te -\frac{3\left(-46+29C\right)}{C\left(-2+C\right)}.
x=-\frac{18}{C-2},y=\frac{3\left(29C-46\right)}{C-2}
Kua oti te pūnaha te whakatau.
Cx+y=69,2x+y=87
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}C&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}69\\87\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}C&1\\2&1\end{matrix}\right))\left(\begin{matrix}C&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}C&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}C&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}C&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}C&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{C-2}&-\frac{1}{C-2}\\-\frac{2}{C-2}&\frac{C}{C-2}\end{matrix}\right)\left(\begin{matrix}69\\87\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{C-2}\times 69+\left(-\frac{1}{C-2}\right)\times 87\\\left(-\frac{2}{C-2}\right)\times 69+\frac{C}{C-2}\times 87\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{C-2}\\\frac{3\left(29C-46\right)}{C-2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{18}{C-2},y=\frac{3\left(29C-46\right)}{C-2}
Tangohia ngā huānga poukapa x me y.
Cx+y=69,2x+y=87
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
Cx-2x+y-y=69-87
Me tango 2x+y=87 mai i Cx+y=69 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
Cx-2x=69-87
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(C-2\right)x=69-87
Tāpiri Cx ki te -2x.
\left(C-2\right)x=-18
Tāpiri 69 ki te -87.
x=-\frac{18}{C-2}
Whakawehea ngā taha e rua ki te C-2.
2\left(-\frac{18}{C-2}\right)+y=87
Whakaurua te -\frac{18}{C-2} mō x ki 2x+y=87. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-\frac{36}{C-2}+y=87
Whakareatia 2 ki te -\frac{18}{C-2}.
y=\frac{3\left(29C-46\right)}{C-2}
Me tāpiri \frac{36}{C-2} ki ngā taha e rua o te whārite.
x=-\frac{18}{C-2},y=\frac{3\left(29C-46\right)}{C-2}
Kua oti te pūnaha te whakatau.