Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

Ax+By=C,Dx+Cy=F
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
Ax+By=C
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
Ax=\left(-B\right)y+C
Me tango By mai i ngā taha e rua o te whārite.
x=\frac{1}{A}\left(\left(-B\right)y+C\right)
Whakawehea ngā taha e rua ki te A.
x=\left(-\frac{B}{A}\right)y+\frac{C}{A}
Whakareatia \frac{1}{A} ki te -By+C.
D\left(\left(-\frac{B}{A}\right)y+\frac{C}{A}\right)+Cy=F
Whakakapia te \frac{-By+C}{A} mō te x ki tērā atu whārite, Dx+Cy=F.
\left(-\frac{BD}{A}\right)y+\frac{CD}{A}+Cy=F
Whakareatia D ki te \frac{-By+C}{A}.
\left(-\frac{BD}{A}+C\right)y+\frac{CD}{A}=F
Tāpiri -\frac{DBy}{A} ki te Cy.
\left(-\frac{BD}{A}+C\right)y=-\frac{CD}{A}+F
Me tango \frac{DC}{A} mai i ngā taha e rua o te whārite.
y=\frac{AF-CD}{AC-BD}
Whakawehea ngā taha e rua ki te C-\frac{DB}{A}.
x=\left(-\frac{B}{A}\right)\times \frac{AF-CD}{AC-BD}+\frac{C}{A}
Whakaurua te \frac{FA-DC}{CA-DB} mō y ki x=\left(-\frac{B}{A}\right)y+\frac{C}{A}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{B\left(AF-CD\right)}{A\left(AC-BD\right)}+\frac{C}{A}
Whakareatia -\frac{B}{A} ki te \frac{FA-DC}{CA-DB}.
x=\frac{C^{2}-BF}{AC-BD}
Tāpiri \frac{C}{A} ki te -\frac{B\left(FA-DC\right)}{A\left(CA-DB\right)}.
x=\frac{C^{2}-BF}{AC-BD},y=\frac{AF-CD}{AC-BD}
Kua oti te pūnaha te whakatau.
Ax+By=C,Dx+Cy=F
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}A&B\\D&C\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}C\\F\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}A&B\\D&C\end{matrix}\right))\left(\begin{matrix}A&B\\D&C\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}A&B\\D&C\end{matrix}\right))\left(\begin{matrix}C\\F\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}A&B\\D&C\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}A&B\\D&C\end{matrix}\right))\left(\begin{matrix}C\\F\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}A&B\\D&C\end{matrix}\right))\left(\begin{matrix}C\\F\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{C}{AC-BD}&-\frac{B}{AC-BD}\\-\frac{D}{AC-BD}&\frac{A}{AC-BD}\end{matrix}\right)\left(\begin{matrix}C\\F\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{C}{AC-BD}C+\left(-\frac{B}{AC-BD}\right)F\\\left(-\frac{D}{AC-BD}\right)C+\frac{A}{AC-BD}F\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{BF-C^{2}}{BD-AC}\\\frac{CD-AF}{BD-AC}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{BF-C^{2}}{BD-AC},y=\frac{CD-AF}{BD-AC}
Tangohia ngā huānga poukapa x me y.
Ax+By=C,Dx+Cy=F
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
DAx+DBy=DC,ADx+ACy=AF
Kia ōrite ai a Ax me Dx, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te D me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te A.
ADx+BDy=CD,ADx+ACy=AF
Whakarūnātia.
ADx+\left(-AD\right)x+BDy+\left(-AC\right)y=CD-AF
Me tango ADx+ACy=AF mai i ADx+BDy=CD mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
BDy+\left(-AC\right)y=CD-AF
Tāpiri DAx ki te -DAx. Ka whakakore atu ngā kupu DAx me -DAx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(BD-AC\right)y=CD-AF
Tāpiri DBy ki te -ACy.
y=\frac{CD-AF}{BD-AC}
Whakawehea ngā taha e rua ki te DB-AC.
Dx+C\times \frac{CD-AF}{BD-AC}=F
Whakaurua te \frac{DC-AF}{DB-AC} mō y ki Dx+Cy=F. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
Dx+\frac{C\left(CD-AF\right)}{BD-AC}=F
Whakareatia C ki te \frac{DC-AF}{DB-AC}.
Dx=\frac{D\left(BF-C^{2}\right)}{BD-AC}
Me tango \frac{C\left(DC-AF\right)}{DB-AC} mai i ngā taha e rua o te whārite.
x=\frac{BF-C^{2}}{BD-AC}
Whakawehea ngā taha e rua ki te D.
x=\frac{BF-C^{2}}{BD-AC},y=\frac{CD-AF}{BD-AC}
Kua oti te pūnaha te whakatau.