Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}x=-\frac{BF-C^{2}}{AC-BD}\text{, }y=-\frac{CD-AF}{AC-BD}\text{, }&\left(B\neq 0\text{ or }C\neq 0\right)\text{ and }\left(C\neq 0\text{ or }D\neq 0\right)\text{ and }\left(C=0\text{ or }A\neq \frac{BD}{C}\text{ or }B=0\text{ or }D=0\right)\text{ and }A\neq 0\\x=-\frac{By-C}{A}\text{, }y\in \mathrm{C}\text{, }&A\neq 0\text{ and }F=\frac{BD^{2}}{A^{2}}\text{ and }C=\frac{BD}{A}\\x=\frac{BF-C^{2}}{BD}\text{, }y=\frac{C}{B}\text{, }&A=0\text{ and }D\neq 0\text{ and }B\neq 0\\x=\frac{F}{D}\text{, }y\in \mathrm{C}\text{, }&A=0\text{ and }D\neq 0\text{ and }C=0\text{ and }B=0\\x\in \mathrm{C}\text{, }y=B^{-\frac{1}{2}}\sqrt{F}\text{, }&A=0\text{ and }D=0\text{ and }B\neq 0\text{ and }C=\sqrt{B}\sqrt{F}\\x\in \mathrm{C}\text{, }y=-B^{-\frac{1}{2}}\sqrt{F}\text{, }&A=0\text{ and }D=0\text{ and }B\neq 0\text{ and }C=-\sqrt{B}\sqrt{F}\\x\in \mathrm{C}\text{, }y\in \mathrm{C}\text{, }&A=0\text{ and }D=0\text{ and }F=0\text{ and }B=0\text{ and }C=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
Ax+By=C,Dx+Cy=F
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
Ax+By=C
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
Ax=\left(-B\right)y+C
Me tango By mai i ngā taha e rua o te whārite.
x=\frac{1}{A}\left(\left(-B\right)y+C\right)
Whakawehea ngā taha e rua ki te A.
x=\left(-\frac{B}{A}\right)y+\frac{C}{A}
Whakareatia \frac{1}{A} ki te -By+C.
D\left(\left(-\frac{B}{A}\right)y+\frac{C}{A}\right)+Cy=F
Whakakapia te \frac{-By+C}{A} mō te x ki tērā atu whārite, Dx+Cy=F.
\left(-\frac{BD}{A}\right)y+\frac{CD}{A}+Cy=F
Whakareatia D ki te \frac{-By+C}{A}.
\left(-\frac{BD}{A}+C\right)y+\frac{CD}{A}=F
Tāpiri -\frac{DBy}{A} ki te Cy.
\left(-\frac{BD}{A}+C\right)y=-\frac{CD}{A}+F
Me tango \frac{DC}{A} mai i ngā taha e rua o te whārite.
y=\frac{AF-CD}{AC-BD}
Whakawehea ngā taha e rua ki te C-\frac{DB}{A}.
x=\left(-\frac{B}{A}\right)\times \frac{AF-CD}{AC-BD}+\frac{C}{A}
Whakaurua te \frac{FA-DC}{CA-DB} mō y ki x=\left(-\frac{B}{A}\right)y+\frac{C}{A}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{B\left(AF-CD\right)}{A\left(AC-BD\right)}+\frac{C}{A}
Whakareatia -\frac{B}{A} ki te \frac{FA-DC}{CA-DB}.
x=\frac{C^{2}-BF}{AC-BD}
Tāpiri \frac{C}{A} ki te -\frac{B\left(FA-DC\right)}{A\left(CA-DB\right)}.
x=\frac{C^{2}-BF}{AC-BD},y=\frac{AF-CD}{AC-BD}
Kua oti te pūnaha te whakatau.
Ax+By=C,Dx+Cy=F
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}A&B\\D&C\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}C\\F\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}A&B\\D&C\end{matrix}\right))\left(\begin{matrix}A&B\\D&C\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}A&B\\D&C\end{matrix}\right))\left(\begin{matrix}C\\F\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}A&B\\D&C\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}A&B\\D&C\end{matrix}\right))\left(\begin{matrix}C\\F\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}A&B\\D&C\end{matrix}\right))\left(\begin{matrix}C\\F\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{C}{AC-BD}&-\frac{B}{AC-BD}\\-\frac{D}{AC-BD}&\frac{A}{AC-BD}\end{matrix}\right)\left(\begin{matrix}C\\F\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{C}{AC-BD}C+\left(-\frac{B}{AC-BD}\right)F\\\left(-\frac{D}{AC-BD}\right)C+\frac{A}{AC-BD}F\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{BF-C^{2}}{BD-AC}\\\frac{CD-AF}{BD-AC}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{BF-C^{2}}{BD-AC},y=\frac{CD-AF}{BD-AC}
Tangohia ngā huānga poukapa x me y.
Ax+By=C,Dx+Cy=F
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
DAx+DBy=DC,ADx+ACy=AF
Kia ōrite ai a Ax me Dx, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te D me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te A.
ADx+BDy=CD,ADx+ACy=AF
Whakarūnātia.
ADx+\left(-AD\right)x+BDy+\left(-AC\right)y=CD-AF
Me tango ADx+ACy=AF mai i ADx+BDy=CD mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
BDy+\left(-AC\right)y=CD-AF
Tāpiri DAx ki te -DAx. Ka whakakore atu ngā kupu DAx me -DAx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(BD-AC\right)y=CD-AF
Tāpiri DBy ki te -ACy.
y=\frac{CD-AF}{BD-AC}
Whakawehea ngā taha e rua ki te DB-AC.
Dx+C\times \frac{CD-AF}{BD-AC}=F
Whakaurua te \frac{DC-AF}{DB-AC} mō y ki Dx+Cy=F. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
Dx+\frac{C\left(CD-AF\right)}{BD-AC}=F
Whakareatia C ki te \frac{DC-AF}{DB-AC}.
Dx=\frac{D\left(BF-C^{2}\right)}{BD-AC}
Me tango \frac{C\left(DC-AF\right)}{DB-AC} mai i ngā taha e rua o te whārite.
x=\frac{BF-C^{2}}{BD-AC}
Whakawehea ngā taha e rua ki te D.
x=\frac{BF-C^{2}}{BD-AC},y=\frac{CD-AF}{BD-AC}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}