Whakaoti mō A, B, C
A=7
B=-19
C=6
Tohaina
Kua tāruatia ki te papatopenga
A=5+6-11-\left(-8+3-2\right)
Whakaarohia te whārite tuatahi. Tangohia te 4 i te 9, ka 5.
A=11-11-\left(-8+3-2\right)
Tāpirihia te 5 ki te 6, ka 11.
A=0-\left(-8+3-2\right)
Tangohia te 11 i te 11, ka 0.
A=0-\left(-5-2\right)
Tāpirihia te -8 ki te 3, ka -5.
A=0-\left(-7\right)
Tangohia te 2 i te -5, ka -7.
A=0+7
Ko te tauaro o -7 ko 7.
A=7
Tāpirihia te 0 ki te 7, ka 7.
B=-16-\left(-8+4\right)-\left(-5+12\right)
Whakaarohia te whārite tuarua. Tangohia te 15 i te 7, ka -8.
B=-16-\left(-4\right)-\left(-5+12\right)
Tāpirihia te -8 ki te 4, ka -4.
B=-16+4-\left(-5+12\right)
Ko te tauaro o -4 ko 4.
B=-12-\left(-5+12\right)
Tāpirihia te -16 ki te 4, ka -12.
B=-12-7
Tāpirihia te -5 ki te 12, ka 7.
B=-19
Tangohia te 7 i te -12, ka -19.
C=2+2-3-\left(-7+5-3\right)
Whakaarohia te whārite tuatoru. Tangohia te 5 i te 7, ka 2.
C=4-3-\left(-7+5-3\right)
Tāpirihia te 2 ki te 2, ka 4.
C=1-\left(-7+5-3\right)
Tangohia te 3 i te 4, ka 1.
C=1-\left(-2-3\right)
Tāpirihia te -7 ki te 5, ka -2.
C=1-\left(-5\right)
Tangohia te 3 i te -2, ka -5.
C=1+5
Ko te tauaro o -5 ko 5.
C=6
Tāpirihia te 1 ki te 5, ka 6.
A=7 B=-19 C=6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}