Whakaoti mō A, B
A=\frac{1}{3}\approx 0.333333333
B = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Tohaina
Kua tāruatia ki te papatopenga
A+B+1=0,A-2B=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
A+B+1=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te A mā te wehe i te A i te taha mauī o te tohu ōrite.
A+B=-1
Me tango 1 mai i ngā taha e rua o te whārite.
A=-B-1
Me tango B mai i ngā taha e rua o te whārite.
-B-1-2B=3
Whakakapia te -B-1 mō te A ki tērā atu whārite, A-2B=3.
-3B-1=3
Tāpiri -B ki te -2B.
-3B=4
Me tāpiri 1 ki ngā taha e rua o te whārite.
B=-\frac{4}{3}
Whakawehea ngā taha e rua ki te -3.
A=-\left(-\frac{4}{3}\right)-1
Whakaurua te -\frac{4}{3} mō B ki A=-B-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
A=\frac{4}{3}-1
Whakareatia -1 ki te -\frac{4}{3}.
A=\frac{1}{3}
Tāpiri -1 ki te \frac{4}{3}.
A=\frac{1}{3},B=-\frac{4}{3}
Kua oti te pūnaha te whakatau.
A+B+1=0,A-2B=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-1\right)+\frac{1}{3}\times 3\\\frac{1}{3}\left(-1\right)-\frac{1}{3}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\-\frac{4}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
A=\frac{1}{3},B=-\frac{4}{3}
Tangohia ngā huānga poukapa A me B.
A+B+1=0,A-2B=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
A-A+B+2B+1=-3
Me tango A-2B=3 mai i A+B+1=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
B+2B+1=-3
Tāpiri A ki te -A. Ka whakakore atu ngā kupu A me -A, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3B+1=-3
Tāpiri B ki te 2B.
3B=-4
Me tango 1 mai i ngā taha e rua o te whārite.
B=-\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
A-2\left(-\frac{4}{3}\right)=3
Whakaurua te -\frac{4}{3} mō B ki A-2B=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
A+\frac{8}{3}=3
Whakareatia -2 ki te -\frac{4}{3}.
A=\frac{1}{3}
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
A=\frac{1}{3},B=-\frac{4}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}