Whakaoti mō x, y
x=1
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-7y=-19,3x+y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x-7y=-19
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=7y-19
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=\frac{1}{9}\left(7y-19\right)
Whakawehea ngā taha e rua ki te 9.
x=\frac{7}{9}y-\frac{19}{9}
Whakareatia \frac{1}{9} ki te 7y-19.
3\left(\frac{7}{9}y-\frac{19}{9}\right)+y=7
Whakakapia te \frac{7y-19}{9} mō te x ki tērā atu whārite, 3x+y=7.
\frac{7}{3}y-\frac{19}{3}+y=7
Whakareatia 3 ki te \frac{7y-19}{9}.
\frac{10}{3}y-\frac{19}{3}=7
Tāpiri \frac{7y}{3} ki te y.
\frac{10}{3}y=\frac{40}{3}
Me tāpiri \frac{19}{3} ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{10}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{9}\times 4-\frac{19}{9}
Whakaurua te 4 mō y ki x=\frac{7}{9}y-\frac{19}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{28-19}{9}
Whakareatia \frac{7}{9} ki te 4.
x=1
Tāpiri -\frac{19}{9} ki te \frac{28}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=4
Kua oti te pūnaha te whakatau.
9x-7y=-19,3x+y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-7\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-19\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}9&-7\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-7\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-\left(-7\times 3\right)}&-\frac{-7}{9-\left(-7\times 3\right)}\\-\frac{3}{9-\left(-7\times 3\right)}&\frac{9}{9-\left(-7\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-19\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}&\frac{7}{30}\\-\frac{1}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}-19\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}\left(-19\right)+\frac{7}{30}\times 7\\-\frac{1}{10}\left(-19\right)+\frac{3}{10}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=4
Tangohia ngā huānga poukapa x me y.
9x-7y=-19,3x+y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 9x+3\left(-7\right)y=3\left(-19\right),9\times 3x+9y=9\times 7
Kia ōrite ai a 9x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
27x-21y=-57,27x+9y=63
Whakarūnātia.
27x-27x-21y-9y=-57-63
Me tango 27x+9y=63 mai i 27x-21y=-57 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-21y-9y=-57-63
Tāpiri 27x ki te -27x. Ka whakakore atu ngā kupu 27x me -27x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-30y=-57-63
Tāpiri -21y ki te -9y.
-30y=-120
Tāpiri -57 ki te -63.
y=4
Whakawehea ngā taha e rua ki te -30.
3x+4=7
Whakaurua te 4 mō y ki 3x+y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=3
Me tango 4 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 3.
x=1,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}