Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x-4y=7,x-4y=-17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x-4y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=4y+7
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{9}\left(4y+7\right)
Whakawehea ngā taha e rua ki te 9.
x=\frac{4}{9}y+\frac{7}{9}
Whakareatia \frac{1}{9} ki te 4y+7.
\frac{4}{9}y+\frac{7}{9}-4y=-17
Whakakapia te \frac{4y+7}{9} mō te x ki tērā atu whārite, x-4y=-17.
-\frac{32}{9}y+\frac{7}{9}=-17
Tāpiri \frac{4y}{9} ki te -4y.
-\frac{32}{9}y=-\frac{160}{9}
Me tango \frac{7}{9} mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{32}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4}{9}\times 5+\frac{7}{9}
Whakaurua te 5 mō y ki x=\frac{4}{9}y+\frac{7}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{20+7}{9}
Whakareatia \frac{4}{9} ki te 5.
x=3
Tāpiri \frac{7}{9} ki te \frac{20}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=5
Kua oti te pūnaha te whakatau.
9x-4y=7,x-4y=-17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}7\\-17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-4\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}7\\-17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}7\\-17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{9\left(-4\right)-\left(-4\right)}&-\frac{-4}{9\left(-4\right)-\left(-4\right)}\\-\frac{1}{9\left(-4\right)-\left(-4\right)}&\frac{9}{9\left(-4\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}7\\-17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&-\frac{1}{8}\\\frac{1}{32}&-\frac{9}{32}\end{matrix}\right)\left(\begin{matrix}7\\-17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 7-\frac{1}{8}\left(-17\right)\\\frac{1}{32}\times 7-\frac{9}{32}\left(-17\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=5
Tangohia ngā huānga poukapa x me y.
9x-4y=7,x-4y=-17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9x-x-4y+4y=7+17
Me tango x-4y=-17 mai i 9x-4y=7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9x-x=7+17
Tāpiri -4y ki te 4y. Ka whakakore atu ngā kupu -4y me 4y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8x=7+17
Tāpiri 9x ki te -x.
8x=24
Tāpiri 7 ki te 17.
x=3
Whakawehea ngā taha e rua ki te 8.
3-4y=-17
Whakaurua te 3 mō x ki x-4y=-17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-4y=-20
Me tango 3 mai i ngā taha e rua o te whārite.
x=3,y=5
Kua oti te pūnaha te whakatau.