Whakaoti mō x, y
x=3
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-4y=7,x-4y=-17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x-4y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=4y+7
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{9}\left(4y+7\right)
Whakawehea ngā taha e rua ki te 9.
x=\frac{4}{9}y+\frac{7}{9}
Whakareatia \frac{1}{9} ki te 4y+7.
\frac{4}{9}y+\frac{7}{9}-4y=-17
Whakakapia te \frac{4y+7}{9} mō te x ki tērā atu whārite, x-4y=-17.
-\frac{32}{9}y+\frac{7}{9}=-17
Tāpiri \frac{4y}{9} ki te -4y.
-\frac{32}{9}y=-\frac{160}{9}
Me tango \frac{7}{9} mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{32}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4}{9}\times 5+\frac{7}{9}
Whakaurua te 5 mō y ki x=\frac{4}{9}y+\frac{7}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{20+7}{9}
Whakareatia \frac{4}{9} ki te 5.
x=3
Tāpiri \frac{7}{9} ki te \frac{20}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=5
Kua oti te pūnaha te whakatau.
9x-4y=7,x-4y=-17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}7\\-17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-4\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}7\\-17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&-4\end{matrix}\right))\left(\begin{matrix}7\\-17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{9\left(-4\right)-\left(-4\right)}&-\frac{-4}{9\left(-4\right)-\left(-4\right)}\\-\frac{1}{9\left(-4\right)-\left(-4\right)}&\frac{9}{9\left(-4\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}7\\-17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&-\frac{1}{8}\\\frac{1}{32}&-\frac{9}{32}\end{matrix}\right)\left(\begin{matrix}7\\-17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 7-\frac{1}{8}\left(-17\right)\\\frac{1}{32}\times 7-\frac{9}{32}\left(-17\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=5
Tangohia ngā huānga poukapa x me y.
9x-4y=7,x-4y=-17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9x-x-4y+4y=7+17
Me tango x-4y=-17 mai i 9x-4y=7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9x-x=7+17
Tāpiri -4y ki te 4y. Ka whakakore atu ngā kupu -4y me 4y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8x=7+17
Tāpiri 9x ki te -x.
8x=24
Tāpiri 7 ki te 17.
x=3
Whakawehea ngā taha e rua ki te 8.
3-4y=-17
Whakaurua te 3 mō x ki x-4y=-17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-4y=-20
Me tango 3 mai i ngā taha e rua o te whārite.
x=3,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}