Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x-3y-13=0,2x+y-4=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x-3y-13=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x-3y=13
Me tāpiri 13 ki ngā taha e rua o te whārite.
9x=3y+13
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{9}\left(3y+13\right)
Whakawehea ngā taha e rua ki te 9.
x=\frac{1}{3}y+\frac{13}{9}
Whakareatia \frac{1}{9} ki te 3y+13.
2\left(\frac{1}{3}y+\frac{13}{9}\right)+y-4=0
Whakakapia te \frac{y}{3}+\frac{13}{9} mō te x ki tērā atu whārite, 2x+y-4=0.
\frac{2}{3}y+\frac{26}{9}+y-4=0
Whakareatia 2 ki te \frac{y}{3}+\frac{13}{9}.
\frac{5}{3}y+\frac{26}{9}-4=0
Tāpiri \frac{2y}{3} ki te y.
\frac{5}{3}y-\frac{10}{9}=0
Tāpiri \frac{26}{9} ki te -4.
\frac{5}{3}y=\frac{10}{9}
Me tāpiri \frac{10}{9} ki ngā taha e rua o te whārite.
y=\frac{2}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times \frac{2}{3}+\frac{13}{9}
Whakaurua te \frac{2}{3} mō y ki x=\frac{1}{3}y+\frac{13}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2+13}{9}
Whakareatia \frac{1}{3} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{3}
Tāpiri \frac{13}{9} ki te \frac{2}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{3},y=\frac{2}{3}
Kua oti te pūnaha te whakatau.
9x-3y-13=0,2x+y-4=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-3\\2&1\end{matrix}\right))\left(\begin{matrix}9&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-3\\2&1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-3\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-3\\2&1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-3\\2&1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-\left(-3\times 2\right)}&-\frac{-3}{9-\left(-3\times 2\right)}\\-\frac{2}{9-\left(-3\times 2\right)}&\frac{9}{9-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}13\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{1}{5}\\-\frac{2}{15}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}13\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 13+\frac{1}{5}\times 4\\-\frac{2}{15}\times 13+\frac{3}{5}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{2}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{3},y=\frac{2}{3}
Tangohia ngā huānga poukapa x me y.
9x-3y-13=0,2x+y-4=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 9x+2\left(-3\right)y+2\left(-13\right)=0,9\times 2x+9y+9\left(-4\right)=0
Kia ōrite ai a 9x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
18x-6y-26=0,18x+9y-36=0
Whakarūnātia.
18x-18x-6y-9y-26+36=0
Me tango 18x+9y-36=0 mai i 18x-6y-26=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-9y-26+36=0
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-15y-26+36=0
Tāpiri -6y ki te -9y.
-15y+10=0
Tāpiri -26 ki te 36.
-15y=-10
Me tango 10 mai i ngā taha e rua o te whārite.
y=\frac{2}{3}
Whakawehea ngā taha e rua ki te -15.
2x+\frac{2}{3}-4=0
Whakaurua te \frac{2}{3} mō y ki 2x+y-4=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{10}{3}=0
Tāpiri \frac{2}{3} ki te -4.
2x=\frac{10}{3}
Me tāpiri \frac{10}{3} ki ngā taha e rua o te whārite.
x=\frac{5}{3}
Whakawehea ngā taha e rua ki te 2.
x=\frac{5}{3},y=\frac{2}{3}
Kua oti te pūnaha te whakatau.