Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x-3y=27,9x-10y=27
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x-3y=27
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=3y+27
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{9}\left(3y+27\right)
Whakawehea ngā taha e rua ki te 9.
x=\frac{1}{3}y+3
Whakareatia \frac{1}{9} ki te 27+3y.
9\left(\frac{1}{3}y+3\right)-10y=27
Whakakapia te \frac{y}{3}+3 mō te x ki tērā atu whārite, 9x-10y=27.
3y+27-10y=27
Whakareatia 9 ki te \frac{y}{3}+3.
-7y+27=27
Tāpiri 3y ki te -10y.
-7y=0
Me tango 27 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te -7.
x=3
Whakaurua te 0 mō y ki x=\frac{1}{3}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3,y=0
Kua oti te pūnaha te whakatau.
9x-3y=27,9x-10y=27
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-3\\9&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\27\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-3\\9&-10\end{matrix}\right))\left(\begin{matrix}9&-3\\9&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-3\\9&-10\end{matrix}\right))\left(\begin{matrix}27\\27\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-3\\9&-10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-3\\9&-10\end{matrix}\right))\left(\begin{matrix}27\\27\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-3\\9&-10\end{matrix}\right))\left(\begin{matrix}27\\27\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{9\left(-10\right)-\left(-3\times 9\right)}&-\frac{-3}{9\left(-10\right)-\left(-3\times 9\right)}\\-\frac{9}{9\left(-10\right)-\left(-3\times 9\right)}&\frac{9}{9\left(-10\right)-\left(-3\times 9\right)}\end{matrix}\right)\left(\begin{matrix}27\\27\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{63}&-\frac{1}{21}\\\frac{1}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}27\\27\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{63}\times 27-\frac{1}{21}\times 27\\\frac{1}{7}\times 27-\frac{1}{7}\times 27\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=0
Tangohia ngā huānga poukapa x me y.
9x-3y=27,9x-10y=27
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9x-9x-3y+10y=27-27
Me tango 9x-10y=27 mai i 9x-3y=27 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+10y=27-27
Tāpiri 9x ki te -9x. Ka whakakore atu ngā kupu 9x me -9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=27-27
Tāpiri -3y ki te 10y.
7y=0
Tāpiri 27 ki te -27.
y=0
Whakawehea ngā taha e rua ki te 7.
9x=27
Whakaurua te 0 mō y ki 9x-10y=27. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Whakawehea ngā taha e rua ki te 9.
x=3,y=0
Kua oti te pūnaha te whakatau.