Whakaoti mō x, y
x=9
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x+y=88,7x-8y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x+y=88
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=-y+88
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{9}\left(-y+88\right)
Whakawehea ngā taha e rua ki te 9.
x=-\frac{1}{9}y+\frac{88}{9}
Whakareatia \frac{1}{9} ki te -y+88.
7\left(-\frac{1}{9}y+\frac{88}{9}\right)-8y=7
Whakakapia te \frac{-y+88}{9} mō te x ki tērā atu whārite, 7x-8y=7.
-\frac{7}{9}y+\frac{616}{9}-8y=7
Whakareatia 7 ki te \frac{-y+88}{9}.
-\frac{79}{9}y+\frac{616}{9}=7
Tāpiri -\frac{7y}{9} ki te -8y.
-\frac{79}{9}y=-\frac{553}{9}
Me tango \frac{616}{9} mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te -\frac{79}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{9}\times 7+\frac{88}{9}
Whakaurua te 7 mō y ki x=-\frac{1}{9}y+\frac{88}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-7+88}{9}
Whakareatia -\frac{1}{9} ki te 7.
x=9
Tāpiri \frac{88}{9} ki te -\frac{7}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=9,y=7
Kua oti te pūnaha te whakatau.
9x+y=88,7x-8y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&1\\7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}88\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&1\\7&-8\end{matrix}\right))\left(\begin{matrix}9&1\\7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\7&-8\end{matrix}\right))\left(\begin{matrix}88\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&1\\7&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\7&-8\end{matrix}\right))\left(\begin{matrix}88\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\7&-8\end{matrix}\right))\left(\begin{matrix}88\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{9\left(-8\right)-7}&-\frac{1}{9\left(-8\right)-7}\\-\frac{7}{9\left(-8\right)-7}&\frac{9}{9\left(-8\right)-7}\end{matrix}\right)\left(\begin{matrix}88\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{79}&\frac{1}{79}\\\frac{7}{79}&-\frac{9}{79}\end{matrix}\right)\left(\begin{matrix}88\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{79}\times 88+\frac{1}{79}\times 7\\\frac{7}{79}\times 88-\frac{9}{79}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=7
Tangohia ngā huānga poukapa x me y.
9x+y=88,7x-8y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 9x+7y=7\times 88,9\times 7x+9\left(-8\right)y=9\times 7
Kia ōrite ai a 9x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
63x+7y=616,63x-72y=63
Whakarūnātia.
63x-63x+7y+72y=616-63
Me tango 63x-72y=63 mai i 63x+7y=616 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7y+72y=616-63
Tāpiri 63x ki te -63x. Ka whakakore atu ngā kupu 63x me -63x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
79y=616-63
Tāpiri 7y ki te 72y.
79y=553
Tāpiri 616 ki te -63.
y=7
Whakawehea ngā taha e rua ki te 79.
7x-8\times 7=7
Whakaurua te 7 mō y ki 7x-8y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x-56=7
Whakareatia -8 ki te 7.
7x=63
Me tāpiri 56 ki ngā taha e rua o te whārite.
x=9
Whakawehea ngā taha e rua ki te 7.
x=9,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}