Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}x=-\frac{2}{m+6}\text{, }y=-\frac{3}{m+6}\text{, }&m\neq -6\\x=\frac{-2y-1}{3}\text{, }y\in \mathrm{C}\text{, }&m=6\end{matrix}\right.
Whakaoti mō x, y
\left\{\begin{matrix}x=-\frac{2}{m+6}\text{, }y=-\frac{3}{m+6}\text{, }&|m|\neq 6\\x=\frac{-2y-1}{3}\text{, }y\in \mathrm{R}\text{, }&m=6\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x+my+3=0,mx+4y+2=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x+my+3=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x+my=-3
Me tango 3 mai i ngā taha e rua o te whārite.
9x=\left(-m\right)y-3
Me tango my mai i ngā taha e rua o te whārite.
x=\frac{1}{9}\left(\left(-m\right)y-3\right)
Whakawehea ngā taha e rua ki te 9.
x=\left(-\frac{m}{9}\right)y-\frac{1}{3}
Whakareatia \frac{1}{9} ki te -my-3.
m\left(\left(-\frac{m}{9}\right)y-\frac{1}{3}\right)+4y+2=0
Whakakapia te -\frac{my}{9}-\frac{1}{3} mō te x ki tērā atu whārite, mx+4y+2=0.
\left(-\frac{m^{2}}{9}\right)y-\frac{m}{3}+4y+2=0
Whakareatia m ki te -\frac{my}{9}-\frac{1}{3}.
\left(-\frac{m^{2}}{9}+4\right)y-\frac{m}{3}+2=0
Tāpiri -\frac{m^{2}y}{9} ki te 4y.
\left(-\frac{m^{2}}{9}+4\right)y=\frac{m}{3}-2
Me tango -\frac{m}{3}+2 mai i ngā taha e rua o te whārite.
y=-\frac{3}{m+6}
Whakawehea ngā taha e rua ki te -\frac{m^{2}}{9}+4.
x=\left(-\frac{m}{9}\right)\left(-\frac{3}{m+6}\right)-\frac{1}{3}
Whakaurua te -\frac{3}{6+m} mō y ki x=\left(-\frac{m}{9}\right)y-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{m}{3\left(m+6\right)}-\frac{1}{3}
Whakareatia -\frac{m}{9} ki te -\frac{3}{6+m}.
x=-\frac{2}{m+6}
Tāpiri -\frac{1}{3} ki te \frac{m}{3\left(6+m\right)}.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
Kua oti te pūnaha te whakatau.
9x+my+3=0,mx+4y+2=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&m\\m&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}9&m\\m&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&m\\m&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9\times 4-mm}&-\frac{m}{9\times 4-mm}\\-\frac{m}{9\times 4-mm}&\frac{9}{9\times 4-mm}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{36-m^{2}}&-\frac{m}{36-m^{2}}\\-\frac{m}{36-m^{2}}&\frac{9}{36-m^{2}}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{36-m^{2}}\left(-3\right)+\left(-\frac{m}{36-m^{2}}\right)\left(-2\right)\\\left(-\frac{m}{36-m^{2}}\right)\left(-3\right)+\frac{9}{36-m^{2}}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{m+6}\\-\frac{3}{m+6}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
Tangohia ngā huānga poukapa x me y.
9x+my+3=0,mx+4y+2=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
m\times 9x+mmy+m\times 3=0,9mx+9\times 4y+9\times 2=0
Kia ōrite ai a 9x me mx, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te m me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
9mx+m^{2}y+3m=0,9mx+36y+18=0
Whakarūnātia.
9mx+\left(-9m\right)x+m^{2}y-36y+3m-18=0
Me tango 9mx+36y+18=0 mai i 9mx+m^{2}y+3m=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
m^{2}y-36y+3m-18=0
Tāpiri 9mx ki te -9mx. Ka whakakore atu ngā kupu 9mx me -9mx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(m^{2}-36\right)y+3m-18=0
Tāpiri m^{2}y ki te -36y.
\left(m^{2}-36\right)y=18-3m
Me tango -18+3m mai i ngā taha e rua o te whārite.
y=-\frac{3}{m+6}
Whakawehea ngā taha e rua ki te m^{2}-36.
mx+4\left(-\frac{3}{m+6}\right)+2=0
Whakaurua te -\frac{3}{6+m} mō y ki mx+4y+2=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
mx-\frac{12}{m+6}+2=0
Whakareatia 4 ki te -\frac{3}{6+m}.
mx+\frac{2m}{m+6}=0
Tāpiri -\frac{12}{6+m} ki te 2.
mx=-\frac{2m}{m+6}
Me tango \frac{2m}{6+m} mai i ngā taha e rua o te whārite.
x=-\frac{2}{m+6}
Whakawehea ngā taha e rua ki te m.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
Kua oti te pūnaha te whakatau.
9x+my+3=0,mx+4y+2=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x+my+3=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x+my=-3
Me tango 3 mai i ngā taha e rua o te whārite.
9x=\left(-m\right)y-3
Me tango my mai i ngā taha e rua o te whārite.
x=\frac{1}{9}\left(\left(-m\right)y-3\right)
Whakawehea ngā taha e rua ki te 9.
x=\left(-\frac{m}{9}\right)y-\frac{1}{3}
Whakareatia \frac{1}{9} ki te -my-3.
m\left(\left(-\frac{m}{9}\right)y-\frac{1}{3}\right)+4y+2=0
Whakakapia te -\frac{my}{9}-\frac{1}{3} mō te x ki tērā atu whārite, mx+4y+2=0.
\left(-\frac{m^{2}}{9}\right)y-\frac{m}{3}+4y+2=0
Whakareatia m ki te -\frac{my}{9}-\frac{1}{3}.
\left(-\frac{m^{2}}{9}+4\right)y-\frac{m}{3}+2=0
Tāpiri -\frac{m^{2}y}{9} ki te 4y.
\left(-\frac{m^{2}}{9}+4\right)y=\frac{m}{3}-2
Me tango -\frac{m}{3}+2 mai i ngā taha e rua o te whārite.
y=-\frac{3}{m+6}
Whakawehea ngā taha e rua ki te -\frac{m^{2}}{9}+4.
x=\left(-\frac{m}{9}\right)\left(-\frac{3}{m+6}\right)-\frac{1}{3}
Whakaurua te -\frac{3}{6+m} mō y ki x=\left(-\frac{m}{9}\right)y-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{m}{3\left(m+6\right)}-\frac{1}{3}
Whakareatia -\frac{m}{9} ki te -\frac{3}{6+m}.
x=-\frac{2}{m+6}
Tāpiri -\frac{1}{3} ki te \frac{m}{3\left(6+m\right)}.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
Kua oti te pūnaha te whakatau.
9x+my+3=0,mx+4y+2=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&m\\m&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}9&m\\m&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&m\\m&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9\times 4-mm}&-\frac{m}{9\times 4-mm}\\-\frac{m}{9\times 4-mm}&\frac{9}{9\times 4-mm}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{36-m^{2}}&-\frac{m}{36-m^{2}}\\-\frac{m}{36-m^{2}}&\frac{9}{36-m^{2}}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{36-m^{2}}\left(-3\right)+\left(-\frac{m}{36-m^{2}}\right)\left(-2\right)\\\left(-\frac{m}{36-m^{2}}\right)\left(-3\right)+\frac{9}{36-m^{2}}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{m+6}\\-\frac{3}{m+6}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
Tangohia ngā huānga poukapa x me y.
9x+my+3=0,mx+4y+2=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
m\times 9x+mmy+m\times 3=0,9mx+9\times 4y+9\times 2=0
Kia ōrite ai a 9x me mx, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te m me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
9mx+m^{2}y+3m=0,9mx+36y+18=0
Whakarūnātia.
9mx+\left(-9m\right)x+m^{2}y-36y+3m-18=0
Me tango 9mx+36y+18=0 mai i 9mx+m^{2}y+3m=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
m^{2}y-36y+3m-18=0
Tāpiri 9mx ki te -9mx. Ka whakakore atu ngā kupu 9mx me -9mx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(m^{2}-36\right)y+3m-18=0
Tāpiri m^{2}y ki te -36y.
\left(m^{2}-36\right)y=18-3m
Me tango -18+3m mai i ngā taha e rua o te whārite.
y=-\frac{3}{m+6}
Whakawehea ngā taha e rua ki te m^{2}-36.
mx+4\left(-\frac{3}{m+6}\right)+2=0
Whakaurua te -\frac{3}{6+m} mō y ki mx+4y+2=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
mx-\frac{12}{m+6}+2=0
Whakareatia 4 ki te -\frac{3}{6+m}.
mx+\frac{2m}{m+6}=0
Tāpiri -\frac{12}{6+m} ki te 2.
mx=-\frac{2m}{m+6}
Me tango \frac{2m}{6+m} mai i ngā taha e rua o te whārite.
x=-\frac{2}{m+6}
Whakawehea ngā taha e rua ki te m.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}