Whakaoti mō x, y
x = \frac{8640}{1439} = 6\frac{6}{1439} \approx 6.004169562
y = \frac{5692680}{1439} = 3955\frac{1435}{1439} \approx 3955.997220292
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x+8y-5280x=0
Whakaarohia te whārite tuatahi. Tangohia te 5280x mai i ngā taha e rua.
-5271x+8y=0
Pahekotia te 9x me -5280x, ka -5271x.
8x+12y=47520
Whakaarohia te whārite tuarua. Whakareatia te 5280 ki te 9, ka 47520.
-5271x+8y=0,8x+12y=47520
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5271x+8y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5271x=-8y
Me tango 8y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5271}\left(-8\right)y
Whakawehea ngā taha e rua ki te -5271.
x=\frac{8}{5271}y
Whakareatia -\frac{1}{5271} ki te -8y.
8\times \frac{8}{5271}y+12y=47520
Whakakapia te \frac{8y}{5271} mō te x ki tērā atu whārite, 8x+12y=47520.
\frac{64}{5271}y+12y=47520
Whakareatia 8 ki te \frac{8y}{5271}.
\frac{63316}{5271}y=47520
Tāpiri \frac{64y}{5271} ki te 12y.
y=\frac{5692680}{1439}
Whakawehea ngā taha e rua o te whārite ki te \frac{63316}{5271}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{8}{5271}\times \frac{5692680}{1439}
Whakaurua te \frac{5692680}{1439} mō y ki x=\frac{8}{5271}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{8640}{1439}
Whakareatia \frac{8}{5271} ki te \frac{5692680}{1439} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{8640}{1439},y=\frac{5692680}{1439}
Kua oti te pūnaha te whakatau.
9x+8y-5280x=0
Whakaarohia te whārite tuatahi. Tangohia te 5280x mai i ngā taha e rua.
-5271x+8y=0
Pahekotia te 9x me -5280x, ka -5271x.
8x+12y=47520
Whakaarohia te whārite tuarua. Whakareatia te 5280 ki te 9, ka 47520.
-5271x+8y=0,8x+12y=47520
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5271&8\\8&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\47520\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5271&8\\8&12\end{matrix}\right))\left(\begin{matrix}-5271&8\\8&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5271&8\\8&12\end{matrix}\right))\left(\begin{matrix}0\\47520\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5271&8\\8&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5271&8\\8&12\end{matrix}\right))\left(\begin{matrix}0\\47520\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5271&8\\8&12\end{matrix}\right))\left(\begin{matrix}0\\47520\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{-5271\times 12-8\times 8}&-\frac{8}{-5271\times 12-8\times 8}\\-\frac{8}{-5271\times 12-8\times 8}&-\frac{5271}{-5271\times 12-8\times 8}\end{matrix}\right)\left(\begin{matrix}0\\47520\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{15829}&\frac{2}{15829}\\\frac{2}{15829}&\frac{5271}{63316}\end{matrix}\right)\left(\begin{matrix}0\\47520\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15829}\times 47520\\\frac{5271}{63316}\times 47520\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8640}{1439}\\\frac{5692680}{1439}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{8640}{1439},y=\frac{5692680}{1439}
Tangohia ngā huānga poukapa x me y.
9x+8y-5280x=0
Whakaarohia te whārite tuatahi. Tangohia te 5280x mai i ngā taha e rua.
-5271x+8y=0
Pahekotia te 9x me -5280x, ka -5271x.
8x+12y=47520
Whakaarohia te whārite tuarua. Whakareatia te 5280 ki te 9, ka 47520.
-5271x+8y=0,8x+12y=47520
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\left(-5271\right)x+8\times 8y=0,-5271\times 8x-5271\times 12y=-5271\times 47520
Kia ōrite ai a -5271x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5271.
-42168x+64y=0,-42168x-63252y=-250477920
Whakarūnātia.
-42168x+42168x+64y+63252y=250477920
Me tango -42168x-63252y=-250477920 mai i -42168x+64y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
64y+63252y=250477920
Tāpiri -42168x ki te 42168x. Ka whakakore atu ngā kupu -42168x me 42168x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
63316y=250477920
Tāpiri 64y ki te 63252y.
y=\frac{5692680}{1439}
Whakawehea ngā taha e rua ki te 63316.
8x+12\times \frac{5692680}{1439}=47520
Whakaurua te \frac{5692680}{1439} mō y ki 8x+12y=47520. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x+\frac{68312160}{1439}=47520
Whakareatia 12 ki te \frac{5692680}{1439}.
8x=\frac{69120}{1439}
Me tango \frac{68312160}{1439} mai i ngā taha e rua o te whārite.
x=\frac{8640}{1439}
Whakawehea ngā taha e rua ki te 8.
x=\frac{8640}{1439},y=\frac{5692680}{1439}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}