Tīpoka ki ngā ihirangi matua
Whakaoti mō v, w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9v+2w=7,3v-8w=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9v+2w=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te v mā te wehe i te v i te taha mauī o te tohu ōrite.
9v=-2w+7
Me tango 2w mai i ngā taha e rua o te whārite.
v=\frac{1}{9}\left(-2w+7\right)
Whakawehea ngā taha e rua ki te 9.
v=-\frac{2}{9}w+\frac{7}{9}
Whakareatia \frac{1}{9} ki te -2w+7.
3\left(-\frac{2}{9}w+\frac{7}{9}\right)-8w=-2
Whakakapia te \frac{-2w+7}{9} mō te v ki tērā atu whārite, 3v-8w=-2.
-\frac{2}{3}w+\frac{7}{3}-8w=-2
Whakareatia 3 ki te \frac{-2w+7}{9}.
-\frac{26}{3}w+\frac{7}{3}=-2
Tāpiri -\frac{2w}{3} ki te -8w.
-\frac{26}{3}w=-\frac{13}{3}
Me tango \frac{7}{3} mai i ngā taha e rua o te whārite.
w=\frac{1}{2}
Whakawehea ngā taha e rua o te whārite ki te -\frac{26}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
v=-\frac{2}{9}\times \frac{1}{2}+\frac{7}{9}
Whakaurua te \frac{1}{2} mō w ki v=-\frac{2}{9}w+\frac{7}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō v hāngai tonu.
v=\frac{-1+7}{9}
Whakareatia -\frac{2}{9} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
v=\frac{2}{3}
Tāpiri \frac{7}{9} ki te -\frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
v=\frac{2}{3},w=\frac{1}{2}
Kua oti te pūnaha te whakatau.
9v+2w=7,3v-8w=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&2\\3&-8\end{matrix}\right)\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}7\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&2\\3&-8\end{matrix}\right))\left(\begin{matrix}9&2\\3&-8\end{matrix}\right)\left(\begin{matrix}v\\w\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\3&-8\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&2\\3&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}v\\w\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\3&-8\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}v\\w\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\3&-8\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{9\left(-8\right)-2\times 3}&-\frac{2}{9\left(-8\right)-2\times 3}\\-\frac{3}{9\left(-8\right)-2\times 3}&\frac{9}{9\left(-8\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}7\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}&\frac{1}{39}\\\frac{1}{26}&-\frac{3}{26}\end{matrix}\right)\left(\begin{matrix}7\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}\times 7+\frac{1}{39}\left(-2\right)\\\frac{1}{26}\times 7-\frac{3}{26}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}v\\w\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\\\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
v=\frac{2}{3},w=\frac{1}{2}
Tangohia ngā huānga poukapa v me w.
9v+2w=7,3v-8w=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 9v+3\times 2w=3\times 7,9\times 3v+9\left(-8\right)w=9\left(-2\right)
Kia ōrite ai a 9v me 3v, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
27v+6w=21,27v-72w=-18
Whakarūnātia.
27v-27v+6w+72w=21+18
Me tango 27v-72w=-18 mai i 27v+6w=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6w+72w=21+18
Tāpiri 27v ki te -27v. Ka whakakore atu ngā kupu 27v me -27v, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
78w=21+18
Tāpiri 6w ki te 72w.
78w=39
Tāpiri 21 ki te 18.
w=\frac{1}{2}
Whakawehea ngā taha e rua ki te 78.
3v-8\times \frac{1}{2}=-2
Whakaurua te \frac{1}{2} mō w ki 3v-8w=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō v hāngai tonu.
3v-4=-2
Whakareatia -8 ki te \frac{1}{2}.
3v=2
Me tāpiri 4 ki ngā taha e rua o te whārite.
v=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
v=\frac{2}{3},w=\frac{1}{2}
Kua oti te pūnaha te whakatau.