Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+20y=800
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
0=x+15y
Whakaarohia te whārite tuarua. Whakareatia te 0 ki te 0, ka 0.
x+15y=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x+20y=800,x+15y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+20y=800
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-20y+800
Me tango 20y mai i ngā taha e rua o te whārite.
-20y+800+15y=0
Whakakapia te -20y+800 mō te x ki tērā atu whārite, x+15y=0.
-5y+800=0
Tāpiri -20y ki te 15y.
-5y=-800
Me tango 800 mai i ngā taha e rua o te whārite.
y=160
Whakawehea ngā taha e rua ki te -5.
x=-20\times 160+800
Whakaurua te 160 mō y ki x=-20y+800. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3200+800
Whakareatia -20 ki te 160.
x=-2400
Tāpiri 800 ki te -3200.
x=-2400,y=160
Kua oti te pūnaha te whakatau.
x+20y=800
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
0=x+15y
Whakaarohia te whārite tuarua. Whakareatia te 0 ki te 0, ka 0.
x+15y=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x+20y=800,x+15y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&20\\1&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800\\\frac{1}{5}\times 800\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2400\\160\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2400,y=160
Tangohia ngā huānga poukapa x me y.
x+20y=800
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
0=x+15y
Whakaarohia te whārite tuarua. Whakareatia te 0 ki te 0, ka 0.
x+15y=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x+20y=800,x+15y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+20y-15y=800
Me tango x+15y=0 mai i x+20y=800 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-15y=800
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=800
Tāpiri 20y ki te -15y.
y=160
Whakawehea ngā taha e rua ki te 5.
x+15\times 160=0
Whakaurua te 160 mō y ki x+15y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+2400=0
Whakareatia 15 ki te 160.
x=-2400
Me tango 2400 mai i ngā taha e rua o te whārite.
x=-2400,y=160
Kua oti te pūnaha te whakatau.