Whakaoti mō x, y
x = \frac{1349}{700} = 1\frac{649}{700} \approx 1.927142857
y=-\frac{657}{700}\approx -0.938571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
80x+160y=4,5600x+5600y=5536
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
80x+160y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
80x=-160y+4
Me tango 160y mai i ngā taha e rua o te whārite.
x=\frac{1}{80}\left(-160y+4\right)
Whakawehea ngā taha e rua ki te 80.
x=-2y+\frac{1}{20}
Whakareatia \frac{1}{80} ki te -160y+4.
5600\left(-2y+\frac{1}{20}\right)+5600y=5536
Whakakapia te -2y+\frac{1}{20} mō te x ki tērā atu whārite, 5600x+5600y=5536.
-11200y+280+5600y=5536
Whakareatia 5600 ki te -2y+\frac{1}{20}.
-5600y+280=5536
Tāpiri -11200y ki te 5600y.
-5600y=5256
Me tango 280 mai i ngā taha e rua o te whārite.
y=-\frac{657}{700}
Whakawehea ngā taha e rua ki te -5600.
x=-2\left(-\frac{657}{700}\right)+\frac{1}{20}
Whakaurua te -\frac{657}{700} mō y ki x=-2y+\frac{1}{20}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{657}{350}+\frac{1}{20}
Whakareatia -2 ki te -\frac{657}{700}.
x=\frac{1349}{700}
Tāpiri \frac{1}{20} ki te \frac{657}{350} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1349}{700},y=-\frac{657}{700}
Kua oti te pūnaha te whakatau.
80x+160y=4,5600x+5600y=5536
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5536\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right))\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right))\left(\begin{matrix}4\\5536\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}80&160\\5600&5600\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right))\left(\begin{matrix}4\\5536\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right))\left(\begin{matrix}4\\5536\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5600}{80\times 5600-160\times 5600}&-\frac{160}{80\times 5600-160\times 5600}\\-\frac{5600}{80\times 5600-160\times 5600}&\frac{80}{80\times 5600-160\times 5600}\end{matrix}\right)\left(\begin{matrix}4\\5536\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}&\frac{1}{2800}\\\frac{1}{80}&-\frac{1}{5600}\end{matrix}\right)\left(\begin{matrix}4\\5536\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}\times 4+\frac{1}{2800}\times 5536\\\frac{1}{80}\times 4-\frac{1}{5600}\times 5536\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1349}{700}\\-\frac{657}{700}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1349}{700},y=-\frac{657}{700}
Tangohia ngā huānga poukapa x me y.
80x+160y=4,5600x+5600y=5536
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5600\times 80x+5600\times 160y=5600\times 4,80\times 5600x+80\times 5600y=80\times 5536
Kia ōrite ai a 80x me 5600x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5600 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 80.
448000x+896000y=22400,448000x+448000y=442880
Whakarūnātia.
448000x-448000x+896000y-448000y=22400-442880
Me tango 448000x+448000y=442880 mai i 448000x+896000y=22400 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
896000y-448000y=22400-442880
Tāpiri 448000x ki te -448000x. Ka whakakore atu ngā kupu 448000x me -448000x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
448000y=22400-442880
Tāpiri 896000y ki te -448000y.
448000y=-420480
Tāpiri 22400 ki te -442880.
y=-\frac{657}{700}
Whakawehea ngā taha e rua ki te 448000.
5600x+5600\left(-\frac{657}{700}\right)=5536
Whakaurua te -\frac{657}{700} mō y ki 5600x+5600y=5536. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5600x-5256=5536
Whakareatia 5600 ki te -\frac{657}{700}.
5600x=10792
Me tāpiri 5256 ki ngā taha e rua o te whārite.
x=\frac{1349}{700}
Whakawehea ngā taha e rua ki te 5600.
x=\frac{1349}{700},y=-\frac{657}{700}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}