Whakaoti mō x, y
x=\frac{3\lambda }{2}+0.025
y=-\frac{\lambda }{2}+0.025
Graph
Tohaina
Kua tāruatia ki te papatopenga
160y+80\lambda =4,3y+x=0.1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
160y+80\lambda =4
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
160y=4-80\lambda
Me tango 80\lambda mai i ngā taha e rua o te whārite.
y=-\frac{\lambda }{2}+\frac{1}{40}
Whakawehea ngā taha e rua ki te 160.
3\left(-\frac{\lambda }{2}+\frac{1}{40}\right)+x=0.1
Whakakapia te \frac{1}{40}-\frac{\lambda }{2} mō te y ki tērā atu whārite, 3y+x=0.1.
-\frac{3\lambda }{2}+\frac{3}{40}+x=0.1
Whakareatia 3 ki te \frac{1}{40}-\frac{\lambda }{2}.
x=\frac{3\lambda }{2}+\frac{1}{40}
Me tango \frac{3}{40}-\frac{3\lambda }{2} mai i ngā taha e rua o te whārite.
y=-\frac{\lambda }{2}+\frac{1}{40},x=\frac{3\lambda }{2}+\frac{1}{40}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}