Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8y+x=7,7y+8x=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8y+x=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
8y=-x+7
Me tango x mai i ngā taha e rua o te whārite.
y=\frac{1}{8}\left(-x+7\right)
Whakawehea ngā taha e rua ki te 8.
y=-\frac{1}{8}x+\frac{7}{8}
Whakareatia \frac{1}{8} ki te -x+7.
7\left(-\frac{1}{8}x+\frac{7}{8}\right)+8x=16
Whakakapia te \frac{-x+7}{8} mō te y ki tērā atu whārite, 7y+8x=16.
-\frac{7}{8}x+\frac{49}{8}+8x=16
Whakareatia 7 ki te \frac{-x+7}{8}.
\frac{57}{8}x+\frac{49}{8}=16
Tāpiri -\frac{7x}{8} ki te 8x.
\frac{57}{8}x=\frac{79}{8}
Me tango \frac{49}{8} mai i ngā taha e rua o te whārite.
x=\frac{79}{57}
Whakawehea ngā taha e rua o te whārite ki te \frac{57}{8}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{1}{8}\times \frac{79}{57}+\frac{7}{8}
Whakaurua te \frac{79}{57} mō x ki y=-\frac{1}{8}x+\frac{7}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{79}{456}+\frac{7}{8}
Whakareatia -\frac{1}{8} ki te \frac{79}{57} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{40}{57}
Tāpiri \frac{7}{8} ki te -\frac{79}{456} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{40}{57},x=\frac{79}{57}
Kua oti te pūnaha te whakatau.
8y+x=7,7y+8x=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&1\\7&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&1\\7&8\end{matrix}\right))\left(\begin{matrix}8&1\\7&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\7&8\end{matrix}\right))\left(\begin{matrix}7\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&1\\7&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\7&8\end{matrix}\right))\left(\begin{matrix}7\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\7&8\end{matrix}\right))\left(\begin{matrix}7\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8\times 8-7}&-\frac{1}{8\times 8-7}\\-\frac{7}{8\times 8-7}&\frac{8}{8\times 8-7}\end{matrix}\right)\left(\begin{matrix}7\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{57}&-\frac{1}{57}\\-\frac{7}{57}&\frac{8}{57}\end{matrix}\right)\left(\begin{matrix}7\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{57}\times 7-\frac{1}{57}\times 16\\-\frac{7}{57}\times 7+\frac{8}{57}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{40}{57}\\\frac{79}{57}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{40}{57},x=\frac{79}{57}
Tangohia ngā huānga poukapa y me x.
8y+x=7,7y+8x=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 8y+7x=7\times 7,8\times 7y+8\times 8x=8\times 16
Kia ōrite ai a 8y me 7y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
56y+7x=49,56y+64x=128
Whakarūnātia.
56y-56y+7x-64x=49-128
Me tango 56y+64x=128 mai i 56y+7x=49 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7x-64x=49-128
Tāpiri 56y ki te -56y. Ka whakakore atu ngā kupu 56y me -56y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-57x=49-128
Tāpiri 7x ki te -64x.
-57x=-79
Tāpiri 49 ki te -128.
x=\frac{79}{57}
Whakawehea ngā taha e rua ki te -57.
7y+8\times \frac{79}{57}=16
Whakaurua te \frac{79}{57} mō x ki 7y+8x=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
7y+\frac{632}{57}=16
Whakareatia 8 ki te \frac{79}{57}.
7y=\frac{280}{57}
Me tango \frac{632}{57} mai i ngā taha e rua o te whārite.
y=\frac{40}{57}
Whakawehea ngā taha e rua ki te 7.
y=\frac{40}{57},x=\frac{79}{57}
Kua oti te pūnaha te whakatau.