Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x-9y=15,-5x+3y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x-9y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=9y+15
Me tāpiri 9y ki ngā taha e rua o te whārite.
x=\frac{1}{8}\left(9y+15\right)
Whakawehea ngā taha e rua ki te 8.
x=\frac{9}{8}y+\frac{15}{8}
Whakareatia \frac{1}{8} ki te 9y+15.
-5\left(\frac{9}{8}y+\frac{15}{8}\right)+3y=9
Whakakapia te \frac{9y+15}{8} mō te x ki tērā atu whārite, -5x+3y=9.
-\frac{45}{8}y-\frac{75}{8}+3y=9
Whakareatia -5 ki te \frac{9y+15}{8}.
-\frac{21}{8}y-\frac{75}{8}=9
Tāpiri -\frac{45y}{8} ki te 3y.
-\frac{21}{8}y=\frac{147}{8}
Me tāpiri \frac{75}{8} ki ngā taha e rua o te whārite.
y=-7
Whakawehea ngā taha e rua o te whārite ki te -\frac{21}{8}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{9}{8}\left(-7\right)+\frac{15}{8}
Whakaurua te -7 mō y ki x=\frac{9}{8}y+\frac{15}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-63+15}{8}
Whakareatia \frac{9}{8} ki te -7.
x=-6
Tāpiri \frac{15}{8} ki te -\frac{63}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-6,y=-7
Kua oti te pūnaha te whakatau.
8x-9y=15,-5x+3y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&-9\\-5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&-9\\-5&3\end{matrix}\right))\left(\begin{matrix}8&-9\\-5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\-5&3\end{matrix}\right))\left(\begin{matrix}15\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&-9\\-5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\-5&3\end{matrix}\right))\left(\begin{matrix}15\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\-5&3\end{matrix}\right))\left(\begin{matrix}15\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-\left(-9\left(-5\right)\right)}&-\frac{-9}{8\times 3-\left(-9\left(-5\right)\right)}\\-\frac{-5}{8\times 3-\left(-9\left(-5\right)\right)}&\frac{8}{8\times 3-\left(-9\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}15\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&-\frac{3}{7}\\-\frac{5}{21}&-\frac{8}{21}\end{matrix}\right)\left(\begin{matrix}15\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 15-\frac{3}{7}\times 9\\-\frac{5}{21}\times 15-\frac{8}{21}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
x=-6,y=-7
Tangohia ngā huānga poukapa x me y.
8x-9y=15,-5x+3y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 8x-5\left(-9\right)y=-5\times 15,8\left(-5\right)x+8\times 3y=8\times 9
Kia ōrite ai a 8x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
-40x+45y=-75,-40x+24y=72
Whakarūnātia.
-40x+40x+45y-24y=-75-72
Me tango -40x+24y=72 mai i -40x+45y=-75 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
45y-24y=-75-72
Tāpiri -40x ki te 40x. Ka whakakore atu ngā kupu -40x me 40x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
21y=-75-72
Tāpiri 45y ki te -24y.
21y=-147
Tāpiri -75 ki te -72.
y=-7
Whakawehea ngā taha e rua ki te 21.
-5x+3\left(-7\right)=9
Whakaurua te -7 mō y ki -5x+3y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x-21=9
Whakareatia 3 ki te -7.
-5x=30
Me tāpiri 21 ki ngā taha e rua o te whārite.
x=-6
Whakawehea ngā taha e rua ki te -5.
x=-6,y=-7
Kua oti te pūnaha te whakatau.