Whakaoti mō x, y
x=2
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x-3y=4,-4x+4y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x-3y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=3y+4
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{8}\left(3y+4\right)
Whakawehea ngā taha e rua ki te 8.
x=\frac{3}{8}y+\frac{1}{2}
Whakareatia \frac{1}{8} ki te 3y+4.
-4\left(\frac{3}{8}y+\frac{1}{2}\right)+4y=8
Whakakapia te \frac{3y}{8}+\frac{1}{2} mō te x ki tērā atu whārite, -4x+4y=8.
-\frac{3}{2}y-2+4y=8
Whakareatia -4 ki te \frac{3y}{8}+\frac{1}{2}.
\frac{5}{2}y-2=8
Tāpiri -\frac{3y}{2} ki te 4y.
\frac{5}{2}y=10
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{8}\times 4+\frac{1}{2}
Whakaurua te 4 mō y ki x=\frac{3}{8}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3+1}{2}
Whakareatia \frac{3}{8} ki te 4.
x=2
Tāpiri \frac{1}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=4
Kua oti te pūnaha te whakatau.
8x-3y=4,-4x+4y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&-3\\-4&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&-3\\-4&4\end{matrix}\right))\left(\begin{matrix}8&-3\\-4&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-4&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&-3\\-4&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-4&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-4&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{8\times 4-\left(-3\left(-4\right)\right)}&-\frac{-3}{8\times 4-\left(-3\left(-4\right)\right)}\\-\frac{-4}{8\times 4-\left(-3\left(-4\right)\right)}&\frac{8}{8\times 4-\left(-3\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{20}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4+\frac{3}{20}\times 8\\\frac{1}{5}\times 4+\frac{2}{5}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=4
Tangohia ngā huānga poukapa x me y.
8x-3y=4,-4x+4y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 8x-4\left(-3\right)y=-4\times 4,8\left(-4\right)x+8\times 4y=8\times 8
Kia ōrite ai a 8x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
-32x+12y=-16,-32x+32y=64
Whakarūnātia.
-32x+32x+12y-32y=-16-64
Me tango -32x+32y=64 mai i -32x+12y=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-32y=-16-64
Tāpiri -32x ki te 32x. Ka whakakore atu ngā kupu -32x me 32x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-20y=-16-64
Tāpiri 12y ki te -32y.
-20y=-80
Tāpiri -16 ki te -64.
y=4
Whakawehea ngā taha e rua ki te -20.
-4x+4\times 4=8
Whakaurua te 4 mō y ki -4x+4y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x+16=8
Whakareatia 4 ki te 4.
-4x=-8
Me tango 16 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -4.
x=2,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}