Whakaoti mō x, y
x=2
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x-3y=1,-8x+5y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x-3y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=3y+1
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{8}\left(3y+1\right)
Whakawehea ngā taha e rua ki te 8.
x=\frac{3}{8}y+\frac{1}{8}
Whakareatia \frac{1}{8} ki te 3y+1.
-8\left(\frac{3}{8}y+\frac{1}{8}\right)+5y=9
Whakakapia te \frac{3y+1}{8} mō te x ki tērā atu whārite, -8x+5y=9.
-3y-1+5y=9
Whakareatia -8 ki te \frac{3y+1}{8}.
2y-1=9
Tāpiri -3y ki te 5y.
2y=10
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{8}\times 5+\frac{1}{8}
Whakaurua te 5 mō y ki x=\frac{3}{8}y+\frac{1}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{15+1}{8}
Whakareatia \frac{3}{8} ki te 5.
x=2
Tāpiri \frac{1}{8} ki te \frac{15}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=5
Kua oti te pūnaha te whakatau.
8x-3y=1,-8x+5y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right))\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&-3\\-8&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8\times 5-\left(-3\left(-8\right)\right)}&-\frac{-3}{8\times 5-\left(-3\left(-8\right)\right)}\\-\frac{-8}{8\times 5-\left(-3\left(-8\right)\right)}&\frac{8}{8\times 5-\left(-3\left(-8\right)\right)}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{3}{16}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}+\frac{3}{16}\times 9\\\frac{1}{2}+\frac{1}{2}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=5
Tangohia ngā huānga poukapa x me y.
8x-3y=1,-8x+5y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8\times 8x-8\left(-3\right)y=-8,8\left(-8\right)x+8\times 5y=8\times 9
Kia ōrite ai a 8x me -8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
-64x+24y=-8,-64x+40y=72
Whakarūnātia.
-64x+64x+24y-40y=-8-72
Me tango -64x+40y=72 mai i -64x+24y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24y-40y=-8-72
Tāpiri -64x ki te 64x. Ka whakakore atu ngā kupu -64x me 64x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=-8-72
Tāpiri 24y ki te -40y.
-16y=-80
Tāpiri -8 ki te -72.
y=5
Whakawehea ngā taha e rua ki te -16.
-8x+5\times 5=9
Whakaurua te 5 mō y ki -8x+5y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-8x+25=9
Whakareatia 5 ki te 5.
-8x=-16
Me tango 25 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -8.
x=2,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}