Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x+y=67,4x+7y=51
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+y=67
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-y+67
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-y+67\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{8}y+\frac{67}{8}
Whakareatia \frac{1}{8} ki te -y+67.
4\left(-\frac{1}{8}y+\frac{67}{8}\right)+7y=51
Whakakapia te \frac{-y+67}{8} mō te x ki tērā atu whārite, 4x+7y=51.
-\frac{1}{2}y+\frac{67}{2}+7y=51
Whakareatia 4 ki te \frac{-y+67}{8}.
\frac{13}{2}y+\frac{67}{2}=51
Tāpiri -\frac{y}{2} ki te 7y.
\frac{13}{2}y=\frac{35}{2}
Me tango \frac{67}{2} mai i ngā taha e rua o te whārite.
y=\frac{35}{13}
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{8}\times \frac{35}{13}+\frac{67}{8}
Whakaurua te \frac{35}{13} mō y ki x=-\frac{1}{8}y+\frac{67}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{35}{104}+\frac{67}{8}
Whakareatia -\frac{1}{8} ki te \frac{35}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{209}{26}
Tāpiri \frac{67}{8} ki te -\frac{35}{104} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{209}{26},y=\frac{35}{13}
Kua oti te pūnaha te whakatau.
8x+y=67,4x+7y=51
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&1\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}67\\51\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&1\\4&7\end{matrix}\right))\left(\begin{matrix}8&1\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\4&7\end{matrix}\right))\left(\begin{matrix}67\\51\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&1\\4&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\4&7\end{matrix}\right))\left(\begin{matrix}67\\51\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\4&7\end{matrix}\right))\left(\begin{matrix}67\\51\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8\times 7-4}&-\frac{1}{8\times 7-4}\\-\frac{4}{8\times 7-4}&\frac{8}{8\times 7-4}\end{matrix}\right)\left(\begin{matrix}67\\51\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{52}&-\frac{1}{52}\\-\frac{1}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}67\\51\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{52}\times 67-\frac{1}{52}\times 51\\-\frac{1}{13}\times 67+\frac{2}{13}\times 51\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{209}{26}\\\frac{35}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{209}{26},y=\frac{35}{13}
Tangohia ngā huānga poukapa x me y.
8x+y=67,4x+7y=51
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 8x+4y=4\times 67,8\times 4x+8\times 7y=8\times 51
Kia ōrite ai a 8x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
32x+4y=268,32x+56y=408
Whakarūnātia.
32x-32x+4y-56y=268-408
Me tango 32x+56y=408 mai i 32x+4y=268 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-56y=268-408
Tāpiri 32x ki te -32x. Ka whakakore atu ngā kupu 32x me -32x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-52y=268-408
Tāpiri 4y ki te -56y.
-52y=-140
Tāpiri 268 ki te -408.
y=\frac{35}{13}
Whakawehea ngā taha e rua ki te -52.
4x+7\times \frac{35}{13}=51
Whakaurua te \frac{35}{13} mō y ki 4x+7y=51. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+\frac{245}{13}=51
Whakareatia 7 ki te \frac{35}{13}.
4x=\frac{418}{13}
Me tango \frac{245}{13} mai i ngā taha e rua o te whārite.
x=\frac{209}{26}
Whakawehea ngā taha e rua ki te 4.
x=\frac{209}{26},y=\frac{35}{13}
Kua oti te pūnaha te whakatau.