Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x+y=64,x+y=42
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+y=64
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-y+64
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-y+64\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{8}y+8
Whakareatia \frac{1}{8} ki te -y+64.
-\frac{1}{8}y+8+y=42
Whakakapia te -\frac{y}{8}+8 mō te x ki tērā atu whārite, x+y=42.
\frac{7}{8}y+8=42
Tāpiri -\frac{y}{8} ki te y.
\frac{7}{8}y=34
Me tango 8 mai i ngā taha e rua o te whārite.
y=\frac{272}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{8}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{8}\times \frac{272}{7}+8
Whakaurua te \frac{272}{7} mō y ki x=-\frac{1}{8}y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{34}{7}+8
Whakareatia -\frac{1}{8} ki te \frac{272}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{22}{7}
Tāpiri 8 ki te -\frac{34}{7}.
x=\frac{22}{7},y=\frac{272}{7}
Kua oti te pūnaha te whakatau.
8x+y=64,x+y=42
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\42\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&1\\1&1\end{matrix}\right))\left(\begin{matrix}8&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&1\end{matrix}\right))\left(\begin{matrix}64\\42\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&1\end{matrix}\right))\left(\begin{matrix}64\\42\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&1\end{matrix}\right))\left(\begin{matrix}64\\42\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8-1}&-\frac{1}{8-1}\\-\frac{1}{8-1}&\frac{8}{8-1}\end{matrix}\right)\left(\begin{matrix}64\\42\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\-\frac{1}{7}&\frac{8}{7}\end{matrix}\right)\left(\begin{matrix}64\\42\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 64-\frac{1}{7}\times 42\\-\frac{1}{7}\times 64+\frac{8}{7}\times 42\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{7}\\\frac{272}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{22}{7},y=\frac{272}{7}
Tangohia ngā huānga poukapa x me y.
8x+y=64,x+y=42
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8x-x+y-y=64-42
Me tango x+y=42 mai i 8x+y=64 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8x-x=64-42
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7x=64-42
Tāpiri 8x ki te -x.
7x=22
Tāpiri 64 ki te -42.
x=\frac{22}{7}
Whakawehea ngā taha e rua ki te 7.
\frac{22}{7}+y=42
Whakaurua te \frac{22}{7} mō x ki x+y=42. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{272}{7}
Me tango \frac{22}{7} mai i ngā taha e rua o te whārite.
x=\frac{22}{7},y=\frac{272}{7}
Kua oti te pūnaha te whakatau.