Whakaoti mō x, y
x=4
y=-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+y=24,x-2y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-y+24
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-y+24\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{8}y+3
Whakareatia \frac{1}{8} ki te -y+24.
-\frac{1}{8}y+3-2y=20
Whakakapia te -\frac{y}{8}+3 mō te x ki tērā atu whārite, x-2y=20.
-\frac{17}{8}y+3=20
Tāpiri -\frac{y}{8} ki te -2y.
-\frac{17}{8}y=17
Me tango 3 mai i ngā taha e rua o te whārite.
y=-8
Whakawehea ngā taha e rua o te whārite ki te -\frac{17}{8}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{8}\left(-8\right)+3
Whakaurua te -8 mō y ki x=-\frac{1}{8}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+3
Whakareatia -\frac{1}{8} ki te -8.
x=4
Tāpiri 3 ki te 1.
x=4,y=-8
Kua oti te pūnaha te whakatau.
8x+y=24,x-2y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&1\\1&-2\end{matrix}\right))\left(\begin{matrix}8&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&-2\end{matrix}\right))\left(\begin{matrix}24\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&-2\end{matrix}\right))\left(\begin{matrix}24\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\1&-2\end{matrix}\right))\left(\begin{matrix}24\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{8\left(-2\right)-1}&-\frac{1}{8\left(-2\right)-1}\\-\frac{1}{8\left(-2\right)-1}&\frac{8}{8\left(-2\right)-1}\end{matrix}\right)\left(\begin{matrix}24\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{1}{17}\\\frac{1}{17}&-\frac{8}{17}\end{matrix}\right)\left(\begin{matrix}24\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 24+\frac{1}{17}\times 20\\\frac{1}{17}\times 24-\frac{8}{17}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-8
Tangohia ngā huānga poukapa x me y.
8x+y=24,x-2y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8x+y=24,8x+8\left(-2\right)y=8\times 20
Kia ōrite ai a 8x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
8x+y=24,8x-16y=160
Whakarūnātia.
8x-8x+y+16y=24-160
Me tango 8x-16y=160 mai i 8x+y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+16y=24-160
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17y=24-160
Tāpiri y ki te 16y.
17y=-136
Tāpiri 24 ki te -160.
y=-8
Whakawehea ngā taha e rua ki te 17.
x-2\left(-8\right)=20
Whakaurua te -8 mō y ki x-2y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+16=20
Whakareatia -2 ki te -8.
x=4
Me tango 16 mai i ngā taha e rua o te whārite.
x=4,y=-8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}