Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x+4y=2,2x+3y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+4y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-4y+2
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-4y+2\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{2}y+\frac{1}{4}
Whakareatia \frac{1}{8} ki te -4y+2.
2\left(-\frac{1}{2}y+\frac{1}{4}\right)+3y=5
Whakakapia te -\frac{y}{2}+\frac{1}{4} mō te x ki tērā atu whārite, 2x+3y=5.
-y+\frac{1}{2}+3y=5
Whakareatia 2 ki te -\frac{y}{2}+\frac{1}{4}.
2y+\frac{1}{2}=5
Tāpiri -y ki te 3y.
2y=\frac{9}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
y=\frac{9}{4}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}\times \frac{9}{4}+\frac{1}{4}
Whakaurua te \frac{9}{4} mō y ki x=-\frac{1}{2}y+\frac{1}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{9}{8}+\frac{1}{4}
Whakareatia -\frac{1}{2} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{7}{8}
Tāpiri \frac{1}{4} ki te -\frac{9}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{7}{8},y=\frac{9}{4}
Kua oti te pūnaha te whakatau.
8x+4y=2,2x+3y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&4\\2&3\end{matrix}\right))\left(\begin{matrix}8&4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&4\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-4\times 2}&-\frac{4}{8\times 3-4\times 2}\\-\frac{2}{8\times 3-4\times 2}&\frac{8}{8\times 3-4\times 2}\end{matrix}\right)\left(\begin{matrix}2\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}&-\frac{1}{4}\\-\frac{1}{8}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}\times 2-\frac{1}{4}\times 5\\-\frac{1}{8}\times 2+\frac{1}{2}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{8}\\\frac{9}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{7}{8},y=\frac{9}{4}
Tangohia ngā huānga poukapa x me y.
8x+4y=2,2x+3y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 8x+2\times 4y=2\times 2,8\times 2x+8\times 3y=8\times 5
Kia ōrite ai a 8x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
16x+8y=4,16x+24y=40
Whakarūnātia.
16x-16x+8y-24y=4-40
Me tango 16x+24y=40 mai i 16x+8y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-24y=4-40
Tāpiri 16x ki te -16x. Ka whakakore atu ngā kupu 16x me -16x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=4-40
Tāpiri 8y ki te -24y.
-16y=-36
Tāpiri 4 ki te -40.
y=\frac{9}{4}
Whakawehea ngā taha e rua ki te -16.
2x+3\times \frac{9}{4}=5
Whakaurua te \frac{9}{4} mō y ki 2x+3y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{27}{4}=5
Whakareatia 3 ki te \frac{9}{4}.
2x=-\frac{7}{4}
Me tango \frac{27}{4} mai i ngā taha e rua o te whārite.
x=-\frac{7}{8}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{7}{8},y=\frac{9}{4}
Kua oti te pūnaha te whakatau.