Whakaoti mō x, y
x=\frac{3}{4}=0.75
y = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+4y=-4,4x-2y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+4y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-4y-4
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-4y-4\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{2}y-\frac{1}{2}
Whakareatia \frac{1}{8} ki te -4y-4.
4\left(-\frac{1}{2}y-\frac{1}{2}\right)-2y=8
Whakakapia te \frac{-y-1}{2} mō te x ki tērā atu whārite, 4x-2y=8.
-2y-2-2y=8
Whakareatia 4 ki te \frac{-y-1}{2}.
-4y-2=8
Tāpiri -2y ki te -2y.
-4y=10
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-\frac{5}{2}
Whakawehea ngā taha e rua ki te -4.
x=-\frac{1}{2}\left(-\frac{5}{2}\right)-\frac{1}{2}
Whakaurua te -\frac{5}{2} mō y ki x=-\frac{1}{2}y-\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{4}-\frac{1}{2}
Whakareatia -\frac{1}{2} ki te -\frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{4}
Tāpiri -\frac{1}{2} ki te \frac{5}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{4},y=-\frac{5}{2}
Kua oti te pūnaha te whakatau.
8x+4y=-4,4x-2y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&4\\4&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&4\\4&-2\end{matrix}\right))\left(\begin{matrix}8&4\\4&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&-2\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&4\\4&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&-2\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&-2\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{8\left(-2\right)-4\times 4}&-\frac{4}{8\left(-2\right)-4\times 4}\\-\frac{4}{8\left(-2\right)-4\times 4}&\frac{8}{8\left(-2\right)-4\times 4}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}&\frac{1}{8}\\\frac{1}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}\left(-4\right)+\frac{1}{8}\times 8\\\frac{1}{8}\left(-4\right)-\frac{1}{4}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\-\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3}{4},y=-\frac{5}{2}
Tangohia ngā huānga poukapa x me y.
8x+4y=-4,4x-2y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 8x+4\times 4y=4\left(-4\right),8\times 4x+8\left(-2\right)y=8\times 8
Kia ōrite ai a 8x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
32x+16y=-16,32x-16y=64
Whakarūnātia.
32x-32x+16y+16y=-16-64
Me tango 32x-16y=64 mai i 32x+16y=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16y+16y=-16-64
Tāpiri 32x ki te -32x. Ka whakakore atu ngā kupu 32x me -32x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
32y=-16-64
Tāpiri 16y ki te 16y.
32y=-80
Tāpiri -16 ki te -64.
y=-\frac{5}{2}
Whakawehea ngā taha e rua ki te 32.
4x-2\left(-\frac{5}{2}\right)=8
Whakaurua te -\frac{5}{2} mō y ki 4x-2y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+5=8
Whakareatia -2 ki te -\frac{5}{2}.
4x=3
Me tango 5 mai i ngā taha e rua o te whārite.
x=\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{3}{4},y=-\frac{5}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}