Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8+4x-2y=0
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
4x-2y=-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-4x+3y=14
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
4x-2y=-8,-4x+3y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-2y=-8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=2y-8
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(2y-8\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2}y-2
Whakareatia \frac{1}{4} ki te -8+2y.
-4\left(\frac{1}{2}y-2\right)+3y=14
Whakakapia te \frac{y}{2}-2 mō te x ki tērā atu whārite, -4x+3y=14.
-2y+8+3y=14
Whakareatia -4 ki te \frac{y}{2}-2.
y+8=14
Tāpiri -2y ki te 3y.
y=6
Me tango 8 mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\times 6-2
Whakaurua te 6 mō y ki x=\frac{1}{2}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3-2
Whakareatia \frac{1}{2} ki te 6.
x=1
Tāpiri -2 ki te 3.
x=1,y=6
Kua oti te pūnaha te whakatau.
8+4x-2y=0
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
4x-2y=-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-4x+3y=14
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
4x-2y=-8,-4x+3y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-2\\-4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\left(-4\right)\right)}&-\frac{-2}{4\times 3-\left(-2\left(-4\right)\right)}\\-\frac{-4}{4\times 3-\left(-2\left(-4\right)\right)}&\frac{4}{4\times 3-\left(-2\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-8\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}-8\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\left(-8\right)+\frac{1}{2}\times 14\\-8+14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=6
Tangohia ngā huānga poukapa x me y.
8+4x-2y=0
Whakaarohia te whārite tuatahi. Tangohia te 2y mai i ngā taha e rua.
4x-2y=-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-4x+3y=14
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
4x-2y=-8,-4x+3y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 4x-4\left(-2\right)y=-4\left(-8\right),4\left(-4\right)x+4\times 3y=4\times 14
Kia ōrite ai a 4x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-16x+8y=32,-16x+12y=56
Whakarūnātia.
-16x+16x+8y-12y=32-56
Me tango -16x+12y=56 mai i -16x+8y=32 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-12y=32-56
Tāpiri -16x ki te 16x. Ka whakakore atu ngā kupu -16x me 16x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y=32-56
Tāpiri 8y ki te -12y.
-4y=-24
Tāpiri 32 ki te -56.
y=6
Whakawehea ngā taha e rua ki te -4.
-4x+3\times 6=14
Whakaurua te 6 mō y ki -4x+3y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x+18=14
Whakareatia 3 ki te 6.
-4x=-4
Me tango 18 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -4.
x=1,y=6
Kua oti te pūnaha te whakatau.