Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x-8y=9,4x+3y=-10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-8y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=8y+9
Me tāpiri 8y ki ngā taha e rua o te whārite.
x=\frac{1}{7}\left(8y+9\right)
Whakawehea ngā taha e rua ki te 7.
x=\frac{8}{7}y+\frac{9}{7}
Whakareatia \frac{1}{7} ki te 8y+9.
4\left(\frac{8}{7}y+\frac{9}{7}\right)+3y=-10
Whakakapia te \frac{8y+9}{7} mō te x ki tērā atu whārite, 4x+3y=-10.
\frac{32}{7}y+\frac{36}{7}+3y=-10
Whakareatia 4 ki te \frac{8y+9}{7}.
\frac{53}{7}y+\frac{36}{7}=-10
Tāpiri \frac{32y}{7} ki te 3y.
\frac{53}{7}y=-\frac{106}{7}
Me tango \frac{36}{7} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{53}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{8}{7}\left(-2\right)+\frac{9}{7}
Whakaurua te -2 mō y ki x=\frac{8}{7}y+\frac{9}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-16+9}{7}
Whakareatia \frac{8}{7} ki te -2.
x=-1
Tāpiri \frac{9}{7} ki te -\frac{16}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
7x-8y=9,4x+3y=-10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}7&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-8\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7\times 3-\left(-8\times 4\right)}&-\frac{-8}{7\times 3-\left(-8\times 4\right)}\\-\frac{4}{7\times 3-\left(-8\times 4\right)}&\frac{7}{7\times 3-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{53}&\frac{8}{53}\\-\frac{4}{53}&\frac{7}{53}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{53}\times 9+\frac{8}{53}\left(-10\right)\\-\frac{4}{53}\times 9+\frac{7}{53}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-2
Tangohia ngā huānga poukapa x me y.
7x-8y=9,4x+3y=-10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 7x+4\left(-8\right)y=4\times 9,7\times 4x+7\times 3y=7\left(-10\right)
Kia ōrite ai a 7x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
28x-32y=36,28x+21y=-70
Whakarūnātia.
28x-28x-32y-21y=36+70
Me tango 28x+21y=-70 mai i 28x-32y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-32y-21y=36+70
Tāpiri 28x ki te -28x. Ka whakakore atu ngā kupu 28x me -28x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-53y=36+70
Tāpiri -32y ki te -21y.
-53y=106
Tāpiri 36 ki te 70.
y=-2
Whakawehea ngā taha e rua ki te -53.
4x+3\left(-2\right)=-10
Whakaurua te -2 mō y ki 4x+3y=-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-6=-10
Whakareatia 3 ki te -2.
4x=-4
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 4.
x=-1,y=-2
Kua oti te pūnaha te whakatau.