Whakaoti mō x, y
x=3
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x-2y=11,x+y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-2y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=2y+11
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{7}\left(2y+11\right)
Whakawehea ngā taha e rua ki te 7.
x=\frac{2}{7}y+\frac{11}{7}
Whakareatia \frac{1}{7} ki te 2y+11.
\frac{2}{7}y+\frac{11}{7}+y=8
Whakakapia te \frac{2y+11}{7} mō te x ki tērā atu whārite, x+y=8.
\frac{9}{7}y+\frac{11}{7}=8
Tāpiri \frac{2y}{7} ki te y.
\frac{9}{7}y=\frac{45}{7}
Me tango \frac{11}{7} mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te \frac{9}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{7}\times 5+\frac{11}{7}
Whakaurua te 5 mō y ki x=\frac{2}{7}y+\frac{11}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{10+11}{7}
Whakareatia \frac{2}{7} ki te 5.
x=3
Tāpiri \frac{11}{7} ki te \frac{10}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=5
Kua oti te pūnaha te whakatau.
7x-2y=11,x+y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-\left(-2\right)}&-\frac{-2}{7-\left(-2\right)}\\-\frac{1}{7-\left(-2\right)}&\frac{7}{7-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{2}{9}\\-\frac{1}{9}&\frac{7}{9}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 11+\frac{2}{9}\times 8\\-\frac{1}{9}\times 11+\frac{7}{9}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=5
Tangohia ngā huānga poukapa x me y.
7x-2y=11,x+y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x-2y=11,7x+7y=7\times 8
Kia ōrite ai a 7x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
7x-2y=11,7x+7y=56
Whakarūnātia.
7x-7x-2y-7y=11-56
Me tango 7x+7y=56 mai i 7x-2y=11 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-7y=11-56
Tāpiri 7x ki te -7x. Ka whakakore atu ngā kupu 7x me -7x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-9y=11-56
Tāpiri -2y ki te -7y.
-9y=-45
Tāpiri 11 ki te -56.
y=5
Whakawehea ngā taha e rua ki te -9.
x+5=8
Whakaurua te 5 mō y ki x+y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Me tango 5 mai i ngā taha e rua o te whārite.
x=3,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}