Whakaoti mō x, y
x = \frac{1184}{173} = 6\frac{146}{173} \approx 6.843930636
y = \frac{206}{173} = 1\frac{33}{173} \approx 1.190751445
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x-10y=36,-3x+29y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-10y=36
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=10y+36
Me tāpiri 10y ki ngā taha e rua o te whārite.
x=\frac{1}{7}\left(10y+36\right)
Whakawehea ngā taha e rua ki te 7.
x=\frac{10}{7}y+\frac{36}{7}
Whakareatia \frac{1}{7} ki te 10y+36.
-3\left(\frac{10}{7}y+\frac{36}{7}\right)+29y=14
Whakakapia te \frac{10y+36}{7} mō te x ki tērā atu whārite, -3x+29y=14.
-\frac{30}{7}y-\frac{108}{7}+29y=14
Whakareatia -3 ki te \frac{10y+36}{7}.
\frac{173}{7}y-\frac{108}{7}=14
Tāpiri -\frac{30y}{7} ki te 29y.
\frac{173}{7}y=\frac{206}{7}
Me tāpiri \frac{108}{7} ki ngā taha e rua o te whārite.
y=\frac{206}{173}
Whakawehea ngā taha e rua o te whārite ki te \frac{173}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{10}{7}\times \frac{206}{173}+\frac{36}{7}
Whakaurua te \frac{206}{173} mō y ki x=\frac{10}{7}y+\frac{36}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2060}{1211}+\frac{36}{7}
Whakareatia \frac{10}{7} ki te \frac{206}{173} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1184}{173}
Tāpiri \frac{36}{7} ki te \frac{2060}{1211} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1184}{173},y=\frac{206}{173}
Kua oti te pūnaha te whakatau.
7x-10y=36,-3x+29y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-10\\-3&29\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-10\\-3&29\end{matrix}\right))\left(\begin{matrix}7&-10\\-3&29\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-10\\-3&29\end{matrix}\right))\left(\begin{matrix}36\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-10\\-3&29\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-10\\-3&29\end{matrix}\right))\left(\begin{matrix}36\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-10\\-3&29\end{matrix}\right))\left(\begin{matrix}36\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{29}{7\times 29-\left(-10\left(-3\right)\right)}&-\frac{-10}{7\times 29-\left(-10\left(-3\right)\right)}\\-\frac{-3}{7\times 29-\left(-10\left(-3\right)\right)}&\frac{7}{7\times 29-\left(-10\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}36\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{29}{173}&\frac{10}{173}\\\frac{3}{173}&\frac{7}{173}\end{matrix}\right)\left(\begin{matrix}36\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{29}{173}\times 36+\frac{10}{173}\times 14\\\frac{3}{173}\times 36+\frac{7}{173}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1184}{173}\\\frac{206}{173}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1184}{173},y=\frac{206}{173}
Tangohia ngā huānga poukapa x me y.
7x-10y=36,-3x+29y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 7x-3\left(-10\right)y=-3\times 36,7\left(-3\right)x+7\times 29y=7\times 14
Kia ōrite ai a 7x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
-21x+30y=-108,-21x+203y=98
Whakarūnātia.
-21x+21x+30y-203y=-108-98
Me tango -21x+203y=98 mai i -21x+30y=-108 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
30y-203y=-108-98
Tāpiri -21x ki te 21x. Ka whakakore atu ngā kupu -21x me 21x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-173y=-108-98
Tāpiri 30y ki te -203y.
-173y=-206
Tāpiri -108 ki te -98.
y=\frac{206}{173}
Whakawehea ngā taha e rua ki te -173.
-3x+29\times \frac{206}{173}=14
Whakaurua te \frac{206}{173} mō y ki -3x+29y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+\frac{5974}{173}=14
Whakareatia 29 ki te \frac{206}{173}.
-3x=-\frac{3552}{173}
Me tango \frac{5974}{173} mai i ngā taha e rua o te whārite.
x=\frac{1184}{173}
Whakawehea ngā taha e rua ki te -3.
x=\frac{1184}{173},y=\frac{206}{173}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}