Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x-y=-39
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
11x-y=9
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
7x-y=-39,11x-y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-y=-39
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=y-39
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{7}\left(y-39\right)
Whakawehea ngā taha e rua ki te 7.
x=\frac{1}{7}y-\frac{39}{7}
Whakareatia \frac{1}{7} ki te y-39.
11\left(\frac{1}{7}y-\frac{39}{7}\right)-y=9
Whakakapia te \frac{-39+y}{7} mō te x ki tērā atu whārite, 11x-y=9.
\frac{11}{7}y-\frac{429}{7}-y=9
Whakareatia 11 ki te \frac{-39+y}{7}.
\frac{4}{7}y-\frac{429}{7}=9
Tāpiri \frac{11y}{7} ki te -y.
\frac{4}{7}y=\frac{492}{7}
Me tāpiri \frac{429}{7} ki ngā taha e rua o te whārite.
y=123
Whakawehea ngā taha e rua o te whārite ki te \frac{4}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{7}\times 123-\frac{39}{7}
Whakaurua te 123 mō y ki x=\frac{1}{7}y-\frac{39}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{123-39}{7}
Whakareatia \frac{1}{7} ki te 123.
x=12
Tāpiri -\frac{39}{7} ki te \frac{123}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=12,y=123
Kua oti te pūnaha te whakatau.
7x-y=-39
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
11x-y=9
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
7x-y=-39,11x-y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-39\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-1\\11&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-11\right)}&-\frac{-1}{7\left(-1\right)-\left(-11\right)}\\-\frac{11}{7\left(-1\right)-\left(-11\right)}&\frac{7}{7\left(-1\right)-\left(-11\right)}\end{matrix}\right)\left(\begin{matrix}-39\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{11}{4}&\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}-39\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-39\right)+\frac{1}{4}\times 9\\-\frac{11}{4}\left(-39\right)+\frac{7}{4}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\123\end{matrix}\right)
Mahia ngā tātaitanga.
x=12,y=123
Tangohia ngā huānga poukapa x me y.
7x-y=-39
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
11x-y=9
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
7x-y=-39,11x-y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x-11x-y+y=-39-9
Me tango 11x-y=9 mai i 7x-y=-39 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7x-11x=-39-9
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=-39-9
Tāpiri 7x ki te -11x.
-4x=-48
Tāpiri -39 ki te -9.
x=12
Whakawehea ngā taha e rua ki te -4.
11\times 12-y=9
Whakaurua te 12 mō x ki 11x-y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
132-y=9
Whakareatia 11 ki te 12.
-y=-123
Me tango 132 mai i ngā taha e rua o te whārite.
y=123
Whakawehea ngā taha e rua ki te -1.
x=12,y=123
Kua oti te pūnaha te whakatau.